SPSS Categories 11.0

Jacqueline J. Meulman
Willem J. Heiser
SPSS Inc.




For more information about SPSS® software products, please visit our Web site at
http://www.spss.com or contact

SPSS Inc.

233 South Wacker Drive, 11th Floor
Chicago, IL 60606-6412

Tel: (312) 651-3000

Fax: (312) 651-3668

SPSS is a registered trademark and the other product names are the trademarks of SPSS
Inc. for its proprietary computer software. No material describing such software may be
produced or distributed without the written permission of the owners of the trademark
and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subdivision (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South
Wacker Drive, 11th Floor, Chicago, IL 60606-6412.

General notice: Other product names mentioned herein are used for identification
purposes only and may be trademarks of their respective companies.

TableLook is a trademark of SPSS Inc.

Windows is a registered trademark of Microsoft Corporation.

Portions of this product were created using LEADTOOLS © 1991-2000, LEAD
Technologies, Inc. ALL RIGHTS RESERVED.

LEAD, LEADTOQOLS, and LEADVIEW are registered trademarks of LEAD
Technologies, Inc.

Portions of this product were based on the work of the FreeType Team
(http:/fwww freetype.org).

SPSS Categories® 11.0

Copyright © 2001 by SPSS Inc.

All rights reserved.

Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher.

1234567890 0504030201
ISBN 1-56827-276-6



Installation

Compatibility

Preface

SPSS 11.0 is a powerful software package for microcomputer data management and
analysis. The Categories option is an add-on enhancement that provides a compre-
hensive set of procedures for optimal scaling. The procedures in Categories must be
used with the SPSS 11.0 Base and are completely integrated into that system.

The Categories option includes procedures for:

e Categorical regression

e (Categorical principal components analysis

¢ Nonlinear canonical correlation analysis

e Correspondence analysis

¢ Homogeneity analysis

e Multidimensional scaling

To install Categories, follow the instructions for adding and removing features in the
installation instructions supplied with the SPSS Base. (To start, double-click on the
SPSS Setup icon.)

The SPSS system is designed to operate on many computer systems. See the materials
that came with your system for specific information on minimum and recommended
requirements.

Serial Numbers

Your serial number is your identification number with SPSS Inc. You will need this
serial number when you call SPSS Inc. for information regarding support, payment, or
an upgraded system. The serial number was provided with your Base system. Before
using the system, please copy this number to the registration card.



Registration Card

Don’t put it off: fill out and send us your registration card. Until we receive your
registration card, you have an unregistered system. Even if you have previously sent a
card to us, please fill out and return the card enclosed in your Categories package.
Registering your system entitles you to:

e Technical support services
e New product announcements and upgrade announcements

Customer Service

If you have any questions concerning your shipment or account, contact your local
office, listed on page vi. Please have your serial number ready for identification when
calling.

Training Seminars

SPSS Inc. provides both public and onsite training seminars for SPSS. All seminars
feature hands-on workshops. SPSS seminars will be offered in major U.S. and
European cities on a regular basis. For more information on these seminars, call your
local office, listed on page vi.

Technical Support

The services of SPSS Technical Support are available to registered customers.
Customers may call Technical Support for assistance in using SPSS products or for
installation help for one of the supported hardware environments. To reach Technical
Support, see the SPSS Web site at http://www.spss.com, or call your local office, listed
on page vi. Be prepared to identify yourself, your organization, and the serial number
of your system.

Additional Publications

Except for academic course adoptions, additional copies of SPSS product manuals can
be purchased directly from SPSS Inc. Visit our Web site at http://www.spss.com, or
contact your local SPSS office, listed on page vi.

SPSS product manuals may also be purchased from Prentice Hall, the exclusive dis-
tributor of SPSS publications. To order, fill out and mail the Publications order form
included with your system, or call 800-947-7700. If you represent a bookstore or have
an account with Prentice Hall, call 800-382-3419. In Canada, call 800-567-3800. Out-
side of North America, contact your local Prentice Hall office.



Tell Us Your Thoughts

Your comments are important. Please let us know about your experiences with SPSS
products. We especially like to hear about new and interesting applications using the
SPSS system. Please send e-mail to suggest@spss.com, or write to SPSS Inc., Attn:
Director of Product Planning, 233 South Wacker Drive, 11th Floor, Chicago, IL
606006-6412.

About This Manual

This manual is divided into two sections. The first section documents the graphical
user interface and provides examples of the statistical techniques available. In addi-
tion, this section offers advice on interpreting the output. The second part of the manual
is a Syntax Reference section that provides complete command syntax for all of the
commands included in the Categories option. Most features of the system can be ac-
cessed through the dialog box interface, but some functionality can be accessed only
through command syntax.

This manual contains two indexes: a subject index and a syntax index. The subject
index covers both sections of the manual. The syntax index applies only to the Syntax
Reference section.
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Introduction to SPSS Optimal Scaling
Procedures for Categorical Data

SPSS Categories procedures use optimal scaling to analyze data that are difficult or im-
possible for “standard” statistical procedures to analyze.1 This chapter describes what
each procedure does, the situations in which each procedure is most appropriate, the re-
lationships between the procedures, and the relationships of these procedures to their
“standard” statistical counterparts.

What Is Optimal Scaling?

The idea behind optimal scaling is to assign numerical quantifications to the categories
of each variable, thus allowing “standard” procedures to be used to obtain a solution on
the quantified variables.

The optimal scale values are assigned to categories of each variable based on the
optimizing criterion of the procedure in use. Unlike the original labels of the nominal
or ordinal variables in the analysis, these scale values have metric properties.

In most Categories procedures, the optimal quantification for each scaled variable is
obtained through an iterative method called alternating least squares in which, after
the current quantifications are used to find a solution, the quantifications are updated
using that solution. The updated quantifications are then used to find a new solution,
which is used to update the quantifications, and so on until some criterion is reached
that signals the process to stop.

Why Use Optimal Scaling?

Categorical data are often found in marketing research, survey research, and research
in the social and behavioral sciences. In fact, many researchers deal almost exclusively
with categorical data.

1. These procedures and their SPSS implementation were developed by the Data Theory Scaling System Group (DTSS), con-
sisting of members of the departments of Education and Psychology, Faculty of Social and Behavioral Sciences, Leiden
University.



2

Chapter 1

While adaptations of most standard models exist specifically to analyze categorical
data, they often do not perform well for data sets that feature:

* Too few observations
* Too many variables
* Too many values per variable

By quantifying categories, optimal scaling techniques avoid problems in these situa-
tions. Moreover, they are useful even when specialized techniques are appropriate.

Rather than interpreting parameter estimates, the interpretation of optimal scaling
output is often based on graphical displays. Optimal scaling techniques offer excellent
exploratory analyses, which complement other SPSS models well. By narrowing the
focus of your investigation, visualizing your data through optimal scaling can form the
basis of an analysis that centers on interpretation of model parameters.

Optimal Scaling Level and Measurement Level

This can be a very confusing concept when you first use Categories procedures. When
specifying the level, you specify not the level at which variables are measured, but the
level at which they are scaled. The idea is that the variables to be quantified may have
nonlinear relations regardless of how they are measured.

For Categories purposes, there are three basic levels of measurement:

* The nominal level implies that a variable’s values represent unordered categories.
Examples of variables that might be nominal are region, zip code area, religious af-
filiation, and multiple choice categories.

* The ordinal level implies that a variable’s values represent ordered categories. Ex-
amples include attitude scales representing degree of satisfaction or confidence and
preference rating scores.

* The numerical level implies that a variable’s values represent ordered categories
with a meaningful metric, so that distance comparisons between categories are ap-
propriate. Examples include age in years and income in thousands of dollars.

For example, suppose the variables region, job, and age are coded as shown in Table 1.1.

Table 1.1  Coding scheme for region, job, and age

Region Job Age
1 North 1 intern 20 twenty years old
2 South 2 sales rep 22 twenty-two years old
3 East 3 manager 25 twenty-five years old
4 West 27 twenty-seven years old
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The values shown represent the categories of each variable. Region would be a nominal
variable. There are four categories of region, with no intrinsic ordering. Values 1
through 4 simply represent the four categories; the coding scheme is completely arbi-
trary. Job, on the other hand, could be assumed to be an ordinal variable. The original
categories form a progession from intern to manager. Larger codes represent a job higher
on the corporate ladder. However, only the order information is known—nothing can be
said about the distance between adjacent categories. In contrast, age could be assumed
to be a numerical variable. In the case of age, the distances between the values are in-
trinsically meaningful. The distance between 20 and 22 is the same as the distance be-
tween 25 and 27, while the distance between 22 and 25 is greater than either of these.

Selecting the Optimal Scaling Level

It is important to understand that there are no intrinsic properties of a variable that auto-
matically predefine what optimal scaling level you should specify for it. You can explore
your data in any way that makes sense and makes interpretation easier. By analyzing a
numerical-level variable at the ordinal level, for example, the use of a nonlinear trans-
formation may allow a solution in fewer dimensions.

The following two examples illustrate how the “obvious” level of measurement
might not be the best optimal scaling level. Suppose that a variable sorts objects into age
groups. Although age can be scaled as a numerical variable, it may be true that for peo-
ple younger than 25 safety has a positive relation with age, whereas for people older than
60 safety has a negative relation with age. In this case, it might be better to treat age as
a nominal variable.

As another example, a variable that sorts persons by political preference appears to
be essentially nominal. However, if you order the parties from political left to political
right, you might want the quantification of parties to respect this order by using an ordi-
nal level of analysis.

Even though there are no predefined properties of a variable that make it exclusively
one level or another, there are some general guidelines to help the novice user. With sin-
gle-nominal quantification, you don’t usually know the order of the categories but you
want the analysis to impose one. If the order of the categories is known, you should try
ordinal quantification. If the categories are unorderable, you might try multiple-nominal
quantification.
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Transformation Plots

The different levels at which each variable can be scaled impose different restrictions on
the quantifications. Transformation plots illustrate the relationship between the quanti-
fications and the original categories resulting from the selected optimal scaling level.
For example, a linear transformation plot results when a variable is treated as numerical.
Variables treated as ordinal result in a nondecreasing transformation plot. Transforma-
tion plots for variables treated nominally that are U-shaped (or the reverse) display a
quadratic relationship. Nominal variables could also yield transformation plots without
apparent trends by changing the order of the categories completely. Figure 1.1 displays
a sample transformation plot.

Transformation plots are particularly suited to determining how well the selected
optimal scaling level performs. If several categories receive similar quantifications, col-
lapsing these categories into one category may be warranted. Alternatively, if a variable
treated as nominal receives quantifications that display an increasing trend, an ordinal
transformation may result in a similar fit. If that trend is linear, numerical treatment may
be appropriate. However, if collapsing categories or changing scaling levels is war-
ranted, the analysis will not change significantly.

Figure 1.1  Transformation plot of price (numerical)
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Although HOMALS does not currently offer the transformation plot in Figure 1.1 as an
option, creating this plot is a straightforward procedure. For each variable, create a new
variable containing the values (and labels) of the categories. Create a new variable con-
taining the quantifications for that variable from the Categories analysis. Use the line fa-
cility with the data in the chart representing the values of individual cases. You can use
the quantifications for the line in the chart and use the categories to label the chart.
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Category Codes

Some care should be taken when coding categorical variables, because some coding
schemes may yield unwanted output or incomplete analyses. Possible coding schemes
for job are displayed in Table 1.2.

Table 1.2 Alternative coding schemes for job

Scheme
Category A B C D
intern 1 1 5 1
sales rep 2 2 6 5
manager 3 7 7 3

Some Categories procedures require that the range of every variable used be defined.
Any value outside this range is treated as a missing value. The minimum category value
is always 1. The maximum category value is supplied by the user. This value is not the
number of categories for a variable; it is the largest category value. For example, in
Table 1.2, scheme A has a maximum category of 3 and scheme B has a maximum cate-
gory value of 7, yet both schemes code the same three categories.

The variable range determines which categories will be omitted from the analysis.
Any categories with codes outside the defined range are omitted from the analysis. This
is a simple method for omitting categories but can result in unwanted analyses. An
incorrectly defined maximum category can omit valid categories from the analysis. For
example, for scheme B, defining the maximum category value to be 3 indicates that job
has categories coded from 1 to 3; the manager category is treated as missing. Because
no category has actually been coded 3, the third category in the analysis contains no
cases. If you wanted to omit all manager categories, this analysis would be appropriate.
However, if managers are to be included, the maximum category must be defined as 7,
and missing values must be coded with values above 7 or below 1.

For variables treated as nominal or ordinal, the range of the categories does not affect
the results. For nominal variables, only the label and not the value associated with that
label is important. For ordinal variables, the order of the categories is preserved in the
quantifications; the category values themselves are not important. All coding schemes
resulting in the same category ordering will have identical results. For example, the first
three schemes in Table 1.2 are functionally equivalent if job is analyzed at an ordinal
level. The order of the categories is identical in these schemes. Scheme D, on the other
hand, inverts the second and third categories and will yield different results than the
other schemes.
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Although many coding schemes for a variable are functionally equivalent, schemes
with small differences between codes are preferred because the codes have an impact on
the amount of output produced by a procedure. All categories coded with values
between 1 and the user-defined maximum are valid. If any of these categories are empty,
the corresponding quantifications will be either system missing or zero, depending on
the procedure. Although neither of these assignments affect the analyses, output is pro-
duced for these categories. Thus, for scheme B, job has four categories that receive
system-missing values. For scheme C, there are also four categories receiving system-
missing indicators. In contrast, for scheme A there are no system-missing quantifica-
tions. Using consecutive integers as codes for variables treated as nominal or ordinal
results in much less output without affecting the results.

Coding schemes for variables treated as numerical are more restricted than the ordi-
nal case. For these variables, the differences between consecutive categories are
important. Table 1.3 displays three coding schemes for age.

Table 1.3  Alternative coding schemes for age

Scheme
Category A B C
20 20 1 1
22 22 3 2
25 25 6 3
27 27 8 4

Any recoding of numerical variables must preserve the differences between the catego-
ries. Using the original values is one method for ensuring preservation of differences.
However, this can result in many categories having system-missing indicators. For ex-
ample, scheme A in Table 1.3 employs the original observed values. For all Categories
procedures except for correspondence analysis, the maximum category value is 27 and
the minimum category value is set to 1. The first 19 categories are empty and receive
system-missing indicators. The output can quickly become rather cumbersome if the
maximum category is much greater than 1 and there are many empty categories between
1 and the maximum.

To reduce the amount of output, recoding can be done. However, in the numerical
case, the Automatic Recode facility should not be used. Coding to consecutive integers
results in differences of 1 between all consecutive categories and as a result, all quanti-
fications will be equally spaced. The metric characteristics deemed important when
treating a variable as numerical are destroyed by recoding to consecutive integers. For
example, scheme C in Table 1.3 corresponds to automatically recoding age. The differ-
ence between categories 22 and 25 has changed from three to one, and the
quantifications will reflect the latter difference.

An alternative recoding scheme that preserves the differences between categories is to
subtract the smallest category value from every category and add one to each difference.
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Scheme B results from this transformation. The smallest category value, 20, has been
subtracted from each category, and 1 was added to each result. The transformed codes
have a minimum of 1, and all differences are identical to the original data. The maximum
category value is now eight, and the zero quantifications before the first nonzero quanti-
fication are all eliminated. Yet, the nonzero quantifications corresponding to each
category resulting from scheme B are identical to the quantifications from scheme A.

Which Procedure Is Best for Your Application?

The techniques embodied in four of these procedures (Correspondence Analysis, Homo-
geneity Analysis, Categorical Principal Components Analysis, and Nonlinear Canonical
Correlation Analysis) fall into the general area of multivariate data analysis known as
dimension reduction. That is, relationships between variables are represented in a few
dimensions—say two or three—as often as possible. This enables you to describe struc-
tures or patterns in the relationships that would be too difficult to fathom in their original
richness and complexity. In market research applications, these techniques can be a form
of perceptual mapping. A major advantage of these procedures is that they accommo-
date data with different levels of optimal scaling.

Categorical Regression describes the relationship between a categorical response
variable and a combination of categorical predictor variables. The influence of each pre-
dictor variable on the response variable is described by the corresponding regression
weight. As in the other procedures, data can be analyzed with different levels of optimal
scaling.

Multidimensional Scaling describes relationships between objects in as few dimen-
sions as possible, starting either with a matrix of proximities between the objects or with
the original data from which the proximities are computed.

Following are brief guidelines for each of the procedures:

» Use Categorical Regression to predict the values of a categorical dependent variable
from a combination of categorical independent variables.

» Use Categorical Principal Components Analysis to account for patterns of variation
in a single set of variables of mixed optimal scaling levels.

* Use Nonlinear Canonical Correlation Analysis to assess the extent to which two or
more sets of variables of mixed optimal scaling levels are correlated.

» Use Correspondence Analysis to analyze two-way contingency tables or data that can
be expressed as a two-way table, such as brand preference or sociometric choice data.

» Use Homogeneity Analysis to analyze a categorical multivariate data matrix when
you are willing to make no stronger assumption that all variables are analyzed at the
nominal level.

* Use Multidimensional Scaling to analyze proximity data to find a least-squares rep-
resentation of the objects in a low-dimensional space.
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Categorical Regression

The use of Categorical Regression is most appropriate when the goal of your analysis is
to predict a dependent (response) variable from a set of independent (predictor) vari-
ables. As with all optimal scaling procedures, scale values are assigned to each category
of every variable such that these values are optimal with respect to the regression. The
solution of a categorical regression maximizes the squared correlation between the
transformed response and the weighted combination of transformed predictors.

Relation to other Categories procedures. Categorical regression with optimal scaling is
comparable to optimal scaling canonical correlation analysis with two sets, one of which
contains only the dependent variable. In the latter technique, similarity of sets is derived
by comparing each set to an unknown variable that lies somewhere between all of the
sets. In categorical regression, similarity of the transformed response and the linear
combination of transformed predictors is assessed directly.

Relation to standard techniques. In standard linear regression, categorical variables can
either be recoded as indicator variables or can be treated in the same fashion as interval
level variables. In the first approach, the model contains a separate intercept and slope
for each combination of the levels of the categorical variables. This results in a large
number of parameters to interpret. In the second approach, only one parameter is esti-
mated for each variable. However, the arbitrary nature of the category codings makes
generalizations impossible.

If some of the variables are not continuous, alternative analyses are available. If the
response is continuous and the predictors are categorical, analysis of variance is often
employed. If the response is categorical and the predictors are continuous, logistic
regression or discriminant analysis may be appropriate. If the response and the predic-
tors are both categorical, loglinear models are often used.

Regression with optimal scaling offers three scaling levels for each variable. Combi-
nations of these levels can account for a wide range of nonlinear relationships for which
any single “standard” method is ill-suited. Consequently, optimal scaling offers greater
flexibility than the standard approaches with minimal added complexity.

In addition, nonlinear transformations of the predictors usually reduce the dependen-
cies among the predictors. If you compare the eigenvalues of the correlation matrix for
the predictors with the eigenvalues of the correlation matrix for the optimally scaled pre-
dictors, the latter set will usually be less variable than the former. In other words, in
categorical regression, optimal scaling makes the larger eigenvalues of the predictor
correlation matrix smaller and the smaller eigenvalues larger.



Introduction to SPSS Optimal Scaling Procedures for Categorical Data 9

Categorical Principal Components Analysis

The use of Categorical Principal Components Analysis is most appropriate when you
want to account for patterns of variation in a single set of variables of mixed optimal
scaling levels. This technique attempts to reduce the dimensionality of a set of variables
while accounting for as much of the variation as possible. Scale values are assigned to
each category of every variable such that these values are optimal with respect to the
principal components solution. Objects in the analysis receive component scores based
on the quantified data. Plots of the component scores reveal patterns among the objects
in the analysis and can reveal unusual objects in the data. The solution of a categorical
principal components analysis maximizes the correlations of the object scores with each
of the quantified variables, for the number of components (dimensions) specified.

An important application of categorical principal components is to examine prefer-
ence data, in which respondents rank or rate a number of items with respect to
preference. In the usual SPSS data configuration, rows are individuals, columns are
measurements for the items, and the scores across rows are preference scores (on a 0 to
10 scale, for example), making the data row-conditional. For preference data, you may
want to treat the individuals as variables. Using the TRANSPOSE procedure, you can
transpose the data. The raters become the variables, and all variables are declared ordi-
nal. There is no objection to using more variables than objects in CATPCA.

Relation to other Categories procedures. If all variables are declared multiple nominal,
categorical principal components analysis produces an analysis equivalent to a homoge-
neity analysis run on the same variables. Thus, categorical principal components analy-
sis can be seen as a type of homogeneity analysis in which some of the variables are
declared ordinal or numerical.

Relation to standard techniques. If all variables are scaled on the numerical level, cate-
gorical principal components analysis is equivalent to standard principal components
analysis.

More generally, categorical principal components analysis is an alternative to com-
puting the correlations between non-numerical scales and analyzing them using a
standard principal components or factor-analysis approach. Naive use of the usual Pear-
son correlation coefficient as a measure of association for ordinal data can lead to
nontrivial bias in estimation of the correlations.

Nonlinear Canonical Correlation Analysis

Nonlinear canonical correlation analysis is a very general procedure with many different
applications.

The goal of nonlinear canonical correlation analysis is to analyze the relationships
between two or more sets of variables instead of between the variables themselves, as in
principal components analysis. For example, you may have two sets of variables, where
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one set of variables might be demographic background items on a set of respondents,
while a second set of variables might be responses to a set of attitude items. The scaling
levels in the analysis can be any mix of nominal, ordinal, and numerical. Optimal scaling
canonical correlation analysis determines the similarity among the sets by simulta-
neously comparing the canonical variables from each set to a compromise set of scores
assigned to the objects.

Relation to other Categories procedures. If there are two or more sets of variables with
only one variable per set, optimal scaling canonical correlation analysis is equivalent to
optimal scaling principal components analysis. If all variables in a one-variable-per-set
analysis are multiple nominal, optimal scaling canonical correlation analysis is equiva-
lent to homogeneity analysis. If there are two sets of variables, one of which contains
only one variable, optimal scaling canonical correlation analysis is equivalent to cate-
gorical regression with optimal scaling.

Relation to standard techniques. Standard canonical correlation analysis is a statistical
technique that finds a linear combination of one set of variables and a linear combination
of a second set of variables that are maximally correlated. Given this set of linear com-
binations, canonical correlation analysis can find subsequent independent sets of linear
combinations, referred to as canonical variables, up to a maximum number equal to the
number of variables in the smaller set.

If there are two sets of variables in the analysis and all variables are defined to be
numerical, optimal scaling canonical correlation analysis is equivalent to a standard
canonical correlation analysis. Although SPSS does not have a canonical correlation
analysis procedure, many of the relevant statistics can be obtained from multivariate
analysis of variance.

Optimal scaling canonical correlation analysis has various other applications. If you
have two sets of variables and one of the sets contains a nominal variable declared as
single nominal, optimal scaling canonical correlation analysis results can be interpreted
in a similar fashion to regression analysis. If you consider the variable to be multiple
nominal, the optimal scaling analysis is an alternative to discriminant analysis. Group-
ing the variables in more than two sets provides a variety of ways to analyze your data.

Correspondence Analysis

The goal of correspondence analysis is to make biplots for correspondence tables. In a
correspondence table, the row and column variables are assumed to represent unordered
categories; therefore, the nominal optimal scaling level is always used. Both variables
are inspected for their nominal information only. That is, the only consideration is the
fact that some objects are in the same category, while others are not. Nothing is assumed
about the distance or order between categories of the same variable.



Introduction to SPSS Optimal Scaling Procedures for Categorical Data 11

One specific use of correspondence analysis is the analysis of two-way contingency
tables. If a table has r active rows and ¢ active columns, the number of dimensions in the
correspondence analysis solution is the minimum of » minus 1 or ¢ minus 1, whichever
is less. In other words, you could perfectly represent the row categories or the column
categories of a contingency table in a space of min(r,c)—1 dimensions. Practically
speaking, however, you would like to represent the row and column categories of a two-
way table in a low-dimensional space, say two dimensions, for the reason that two-
dimensional plots are more easily comprehensible than multidimensional spatial
representations.

When fewer than the maximum number of possible dimensions is used, the statistics
produced in the analysis describe how well the row and column categories are repre-
sented in the low-dimensional representation. Provided that the quality of representation
of the two-dimensional solution is good, you can examine plots of the row points and
the column points to learn which categories of the row variable are similar, which cate-
gories of the column variable are similar, and which row and column categories are
similar to each other.

Relation to other Categories procedures. Simple correspondence analysis is limited to
two-way tables. If there are more than two variables of interest, you can combine vari-
ables to create interaction variables. For example, for the variables in Table 1.1, you
can combine region and job to create a new variable rejob with the 12 categories in Table
1.4. This new variable forms a two-way table with age (12 rows, 4 columns), which can
be analyzed in correspondence analysis.

Table 1.4  Combinations of region and job

Category Category Category Category
Code Definition Code Definition
1 North, intern 7 East, intern
2 North, sales rep 8 East, sales rep
3 North, manager 9 East, manager
4 South, intern 10 West, intern
5 South, sales rep 11 West, sales rep
6 South, manager 12 West, manager

One shortcoming of this approach is that any pair of variables can be combined. We can
combine job and age, yielding another 12 category variable. Or we can combine region
and age, which results in a new 16 category variable. Each of these interaction variables
forms a two-way table with the remaining variable. Correspondence analyses of these
three tables will not yield identical results, yet each is a valid approach. Furthermore, if
there are four or more variables, two-way tables comparing an interaction variable with
another interaction variable can be constructed. The number of possible tables to ana-
lyze can get quite large, even for a few variables. You can select one of these tables to
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analyze, or you can analyze all of them. Alternatively, the Homogeneity Analysis pro-
cedure can be used to examine all of the variables simultaneously without the need to
construct interaction variables.

Relation to standard techniques. The SPSS Crosstabs procedure can also be used to an-
alyze contingency tables, with independence as a common focus in the analyses. How-
ever, even in small tables, detecting the cause of departures from independence may be
difficult. The utility of correspondence analysis lies in displaying such patterns for two-
way tables of any size. If there is an association between the row and column variables—
that is, if the chi-square value is significant—correspondence analysis may help reveal
the nature of the relationship.

Homogeneity Analysis

Homogeneity analysis tries to produce a solution in which objects within the same cat-
egory are plotted close together and objects in different categories are plotted far apart.
Each object is as close as possible to the category points of categories that apply to the
object. In this way, the categories divide the objects into homogeneous subgroups. Vari-
ables are considered homogeneous when they classify objects in the same categories
into the same subgroups.

For a one-dimensional solution, homogeneity analysis assigns optimal scale values
(category quantifications) to each category of each variable in such a way that overall,
on average, the categories have maximum spread. For a two-dimensional solution,
homogeneity analysis finds a second set of quantifications of the categories of each vari-
able unrelated to the first set, attempting again to maximize spread, and so on. Because
categories of a variable receive as many scorings as there are dimensions, the variables
in the analysis are assumed to be multiple nominal in optimal scaling level.

Homogeneity analysis also assigns scores to the objects in the analysis in such a way
that the category quantifications are the averages, or centroids, of the object scores of
objects in that category.

Relation to other Categories procedures. Homogeneity analysis is also known as multi-
ple correspondence analysis or dual scaling. It gives comparable, but not identical, re-
sults to correspondence analysis when there are only two variables. Correspondence
analysis produces unique output summarizing the fit and quality of representation of the
solution, including stability information. Thus, correspondence analysis is usually pref-
erable to homogeneity analysis in the two-variable case. Another difference between the
two procedures is that the input to homogeneity analysis is a data matrix, where the rows
are objects and the columns are variables, while the input to correspondence analysis
can be the same data matrix, a general proximity matrix, or a joint contingency table,
which is an aggregated matrix where both the rows and columns represent categories of
variables.
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Homogeneity analysis can also be thought of as principal components analysis of
data scaled at the multiple nominal level.

Relation to standard techniques. Homogeneity analysis can be thought of as the analysis
of a multiway contingency table. Multiway contingency tables can also be analyzed with
the SPSS Crosstabs procedure, but Crosstabs gives separate summary statistics for each
category of each control variable. With homogeneity analysis, it is often possible to
summarize the relationship between all the variables with a single two-dimensional plot.

An advanced use of homogeneity analysis is to replace the original category values
with the optimal scale values from the first dimension and perform a secondary multi-
variate analysis. Since homogeneity analysis replaces category labels with numerical
scale values, many different procedures that require numerical data can be applied after
the homogeneity analysis. For example, the Factor Analysis procedure produces a first
principal component that is equivalent to the first dimension of homogeneity analysis.
The component scores in the first dimension are equal to the object scores, and the
squared component loadings are equal to the discrimination measures. The second
homogeneity analysis dimension, however, is not equal to the second dimension of fac-
tor analysis.

Multidimensional Scaling

The use of multidimensional scaling is most appropriate when the goal of your analysis
is to find the structure in a set of distance measures between objects or cases. This is ac-
complished by assigning observations to specific locations in a conceptual low-dimen-
sional space such that the distances between points in the space match the given
(dis)similarities as closely as possible. The result is a least-squares representation of the
objects in that low-dimensional space which, in many cases, will help you further un-
derstand your data.

Relation to other Categories procedures. When you have multivariate data from which
you create distances and then analyze with multidimensional scaling, the results are simi-
lar to analyzing the data using categorical principal components analysis with object prin-
cipal normalization. This kind of PCA is also known as principal coordinates analysis.

Relation to standard techniques. The Categories multidimensional scaling procedure
(PROXSCAL) offers several improvements upon the scaling procedure available in the
Base system (ALSCAL). PROXSCAL offers an accelerated algorithm for certain mod-
els and allows you to put restrictions on the common space. Moreover, PROXSCAL at-
tempts to minimize normalized raw stress, rather than S-stress (also referred to as
strain). The normalized raw stress is generally preferred because it is a measure based
on the distances, while the S-stress is based on the squared distances.
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Displays with More than Two Dimensions

All of the optimal scaling procedures involving dimension reduction allow you to select
the number of dimensions included in the analysis. For analyses with three or more dimen-
sions, these procedures produce three-dimensional scatterplots or matrices of scatterplots.

Three-Dimensional Scatterplots

Figure 1.2 shows a three-dimensional plot of object scores produced by a homogeneity
analysis with four dimensions.

Figure 1.2  Three-dimensional plot of object scores

Dim?2 °

Although only the first three dimensions are displayed on the scatterplot, information
about all dimensions is included when the chart is created. You can choose to display
different combinations of dimensions on the scatterplot by selecting Displayed from the
Series menu in the Chart Editor. Figure 1.3 shows the 3-D Scatterplot Displayed Data
dialog box, with dimension 4 selected to be displayed in place of dimension 3. The plot
displaying these selections is shown in Figure 1.4.
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Figure 1.3  3-D Scatterplot Displayed Data dialog box
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Figure 1.4  Three-dimensional plot of object scores, displaying dimensions 1, 2, and 4
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Scatterplot Matrices

To view more than three dimensions on a single plot, it is useful to graphically display
two-dimensional scatterplots for all dimensions in a matrix scatterplot. To convert a
chart into a scatterplot matrix, use the scatterplot gallery in the Chart Editor. This option
offers great flexibility in converting one chart type to another. A scatterplot matrix dis-
playing four dimensions is shown in Figure 1.5.
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Figure 1.5  Scatterplot matrix displaying object scores for four dimensions

mb

Dirm 1

" |Ditn 2

mp ., unmE™E LR

Liitn 3

LN

Dim 4

In contrast to the other dimension reduction techniques, correspondence analysis pro-
duces a matrix of scatterplots similar to Figure 1.5 for all analyses. If you desire individ-
ual two- or three-dimensional scatterplots, use the Scatter option on the Gallery menu in
the Chart Editor. Alternatively, to omit or add dimensions to an existing scatterplot ma-
trix, use the Displayed command on the Series menu (see the SPSS Base User’s Guide
for information on editing charts and using the chart gallery).

Aspect Ratio in Optimal Scaling Charts

Aspect ratio in optimal scaling plots is isotropic. In a two-dimensional plot, the distance
representing one unit in dimension 1 is equal to the distance representing one unit in di-
mension 2. If you change the range of a dimension in a two-dimensional plot, the system
changes the size of the other dimension to keep the physical distances equal. Isotropic
aspect ratio cannot be overridden for the optimal scaling procedures.



Categorical Regression (CATREG)

Categorical regression quantifies categorical data by assigning numerical values
to the categories, resulting in an optimal linear regression equation for the trans-
formed variables. Categorical regression is also known by the acronym CATREG,
for catregorical regression.

Standard linear regression analysis involves minimizing the sum of squared differ-
ences between a response (dependent) variable and a weighted combination of
predictor (independent) variables. Variables are typically quantitative, with (nominal)
categorical data recoded to binary or contrast variables. As a result, categorical vari-
ables serve to separate groups of cases, and the technique estimates separate sets of
parameters for each group. The estimated coefficients reflect how changes in the pre-
dictors affect the response. Prediction of the response is possible for any combination
of predictor values.

An alternative approach involves regressing the response on the categorical predic-
tor values themselves. Consequently, one coefficient is estimated for each variable.
However, for categorical variables, the category values are arbitrary. Coding the cate-
gories in different ways yield different coefficients, making comparisons across
analyses of the same variables difficult.

CATREG extends the standard approach by simultaneously scaling nominal, ordi-
nal, and numerical variables. The procedure quantifies categorical variables such that
the quantifications reflect characteristics of the original categories. The procedure
treats quantified categorical variables in the same way as numerical variables. Using
nonlinear transformations allow variables to be analyzed at a variety of levels to find
the best-fitting model.

Example. Categorical regression could be used to describe how job satisfaction de-
pends on job category, geographic region, and amount of travel. You might find that
high levels of satisfaction correspond to managers and low travel. The resulting regres-
sion equation could be used to predict job satisfaction for any combination of the three
independent variables.

Statistics and plots. Frequencies, regression coefficients, ANOVA table, iteration his-
tory, category quantifications, correlations between untransformed predictors, correla-
tions between transformed predictors, residual plots, and transformation plots.

17
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Data. CATREG operates on category indicator variables. The category indicators should
be positive integers. You can use the Discretization dialog box to convert fractional-val-
ue variables and string variables into positive integers.

Assumptions. Only one response variable is allowed, but the maximum number of pre-
dictor variables is 200. The data must contain at least three valid cases, and the number
of valid cases must exceed the number of predictor variables plus one.

Related procedures. CATREG is equivalent to categorical canonical correlation
analysis with optimal scaling (OVERALS) with two sets, one of which contains only
one variable. Scaling all variables at the numerical level corresponds to standard
multiple regression analysis.

To Obtain a Categorical Regression

» From the menus choose:

Analyze
Regression
Optimal Scaling...

Figure 2.1  Categorical Regression dialog box

: Categorical Regrezzion B
Dependent Y ariable:

Dizcretize. ..

- Mizsing...
Define Scale.. |
Options...
Independent ¥ ariablelz);
package(Spline ordinal 2 2 Output...
brand(S pline ordinal 2 2]

price[S pline ordinal 2 2] Save.
zeallSpline ordinal 2 2]

E money(Spline ardinal 2 2] Flats...

LR

[efine Scale.. |

ok Paste | Beset | Cancel | Help |

» Select the dependent variable and independent variable(s).
» Click OK.

Optionally, change the scaling level for each variable.
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Define Scale in Categorical Regression

You can set the optimal scaling level for the dependent and independent variables. By
default, they are scaled as second-degree monotonic splines (ordinal) with two interior
knots. Additionally, you can set the weight for analysis variables.

Optimal Scaling Level. You can also select the scaling level for quantifying each
variable.

Spline Ordinal. The order of the categories of the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation is a smooth monotonic piecewise
polynomial of the chosen degree. The pieces are specified by the user-specified num-
ber and procedure-determined placement of the interior knots.

Spline Nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order of the
categories of the observed variable is not preserved. Category points will be on a
straight line (vector) through the origin. The resulting transformation is a smooth,
possibly nonmonotonic, piecewise polynomial of the chosen degree. The pieces are
specified by the user-specified number and procedure-determined placement of the
interior knots.

Ordinal. The order of the categories of the observed variable is preserved in the opti-
mally scaled variable. Category points will be on a straight line (vector) through the
origin. The resulting transformation fits better than the spline ordinal transformation
but is less smooth.

Nominal. The only information in the observed variable that is preserved in the opti-
mally scaled variable is the grouping of objects in categories. The order of the cate-
gories of the observed variable is not preserved. Category points will be on a straight
line (vector) through the origin. The resulting transformation fits better than the
spline nominal transformation but is less smooth.

Numeric. Categories are treated as ordered and equally spaced (interval level). The
order of the categories and the equal distances between category numbers of the ob-
served variable are preserved in the optimally scaled variable. Category points will
be on a straight line (vector) through the origin. When all variables are at the numeric
level, the analysis is analogous to standard principal components analysis.
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To Define the Scale in CATREG

Select one or more variables on the variables list in the Categorical Regression dialog box.

Click Define Scale.

Figure 2.2  Categorical Regression Define Scale dialog box

Cateqgorical Regression: Define Scale m
— Optiral Scaling Level -m
5 € Ordinal

" Spline Hominal ¢ Mominal Cancel
" Mumeric Help |
— Spline

Degres: I2 Inteniar Knaots: |2

Select the optimal scaling level to be used in the analysis.

Click Continue.

Categorical Regression Discretization

The Discretization dialog box allows you to select a method of recoding your variables.
Fractional-value variables are grouped into seven categories (or into the number of dis-
tinct values of the variable, if this number is less than seven) with an approximately nor-
mal distribution, unless specified otherwise. String variables are always converted into
positive integers by assigning category indicators according to ascending alphanumeric
order. Discretization for string variables applies to these integers. Other variables are left
alone by default. The discretized variables are then used in the analysis.



Categorical Regression (CATREG) 21

Figure 2.3  Categorical Regression Discretization dialog box

Categorical Regression: Dizcretization
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Method. Choose between grouping, ranking, or multiplying.

* Grouping. Recode into a specified number of categories or recode by interval.

* Ranking. The variable is discretized by ranking the cases.

* Multiplying. The current values of the variable are standardized, multiplied by 10,
rounded, and have a constant added such that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:

* Number of categories. Specify a number of categories and whether the values of the
variable should follow an approximately normal or uniform distribution across those
categories.

 Equal intervals. Variables are recoded into categories defined by these equally sized
intervals. You must specify the length of the intervals.
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Categorical Regression Missing Values

The Missing Values dialog box allows you to choose the strategy for handling missing
values in analysis variables and supplementary variables.

Figure 2.4  Categorical Regression Missing Values dialog box

Cateqgorical Regression: Missing Yalues

— Mizzing YWalue Strategy -
: : . Continue I
ot o o
package(E #ciude) —l
brand(Exciude] Help |
price(E =clude]
zeallExclude]
maney[Exclude]
Change
— Strategy
{~ Exclude objects with missing values on this variable.
% |mpute mizsing values.
* Mode {~ Exhra category

Strategy. Choose to impute missing values (active treatment) or exclude objects with
missing values (listwise deletion).

* Impute missing values. Objects with missing values on the selected variable have
those values imputed. You can choose the method of imputation. Select Mode to re-
place missing values with the most frequent category. When there are multiple
modes, the one with the smallest category indicator is used. Select Extra category to
replace missing values with the same quantification of an extra category. This im-
plies that objects with a missing value on this variable are considered to belong to the
same (extra) category.

» Exclude objects with missing values on this variable. Objects with missing values
on the selected variable are excluded from the analysis. This strategy is not available
for supplementary variables.
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Categorical Regression Options

The Options dialog box allows you to select the initial configuration style, specity iteration
and convergence criteria, select supplementary objects, and set the labeling of plots.

Figure 2.5 Categorical Regression Options dialog box
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Supplementary Objects. This allows you to specify the objects that you want to treat as
supplementary. Simply type the number of a supplementary object and click Add. You
cannot weight supplementary objects (specified weights are ignored).

Initial Configuration. If no variables are treated as nominal, select the Numerical config-
uration. If at least one variable is treated as nominal, select the Random configuration.

Criteria. You can specify the maximum number of iterations the regression may go
through in its computations. You can also select a convergence criterion value. The re-
gression stops iterating if the difference in total fit between the last two iterations is less
than the convergence value or if the maximum number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable names
and values will be used in the plots. You can also specify a maximum length for labels.



24 Chapter 2

Categorical Regression Output

The Output dialog box allows you to select the statistics to display in the output.

Figure 2.6  Categorical Regression Output dialog box

Categorical Regression: Output m
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Tables. Produces tables for:

Multiple R. Includes R?, adjusted R, and adjusted R taking the optimal scaling into
account.

Coefficients. This option gives three tables: a Coefficients table that includes betas,
standard error of the betas, f values, and significance; a Coefficients-Optimal Scaling
table with the standard error of the betas taking the optimal scaling degrees of free-
dom into account; and a table with the zero-order, part, and partial correlation, Pratt’s
relative importance measure for the transformed predictors, and the tolerance before
and after transformation.

Iteration history. For each iteration, including the starting values for the algorithm,
the multiple R and regression error are shown. The increase in multiple R is listed
starting from the first iteration.

Correlations of the original variables. A matrix showing the correlations between the
untransformed variables is displayed.

Correlations of the transformed variables. A matrix showing the correlations
between the transformed variables is displayed.
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» ANOVA. This option includes regression and residual sums of squares, mean squares,
and F. Two ANOVA tables are displayed: one with degrees of freedom for the
regression equal to the number of predictor variables and one with degrees of free-
dom for the regression taking the optimal scaling into account.

Category Quantifications. Tables showing the transformed values of the selected
variables are displayed.

Descriptive Statistics. Tables showing the frequencies, missing values, and modes of
the selected variables are displayed.

Categorical Regression Save

The Save dialog box allows you to save results to the working file or an external file.

Figure 2.7  Categorical Regression Save dialog box
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Save to Working File. You can save the transformed values of the variables, model-
predicted values, and residuals to the working file.

Save to External File. You can save the discretized data and transformed variables to
external files.
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Categorical Regression Plots

The Plot dialog box allows you to specify the variables that will produce transformation
and residual plots.

Figure 2.8  Categorical Regression Plot dialog box
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Besidual Plots:

Transformation Plots. For each of these variables, the category quantifications are plot-
ted against the original category values. Empty categories appear on the horizontal axis
but do not affect the computations. These categories are identified by breaks in the line
connecting the quantifications.

Residual Plets. For each of these variables, residuals (computed for the dependent vari-
able predicted from all predictor variables except the predictor variable in question) are
plotted against category indicators and the optimal category quantifications multiplied
with beta against category indicators.

CATREG Command Additional Features

You can customize your categorical regression if you paste your selections into a syntax
window and edit the resulting CATREG command syntax. SPSS command language
also allows you to:

» Specify rootnames for the transformed variables when saving them to the working
data file (with the SAVE subcommand).



Categorical Principal Components
Analysis (CATPCA)

This procedure simultaneously quantifies categorical variables while reducing the di-
mensionality of the data. Categorical principal components analysis is also known by
the acronym CATPCA, for categorical principal components analysis.

The goal of principal components analysis is to reduce an original set of variables
into a smaller set of uncorrelated components that represent most of the information
found in the original variables. The technique is most useful when a large number of
variables prohibits effective interpretation of the relationships between objects (sub-
jects and units). By reducing the dimensionality, you interpret a few components rather
than a large number of variables.

Standard principal components analysis assumes linear relationships between
numeric variables. On the other hand, the optimal-scaling approach allows variables to
be scaled at different levels. Categorical variables are optimally quantified in the spec-
ified dimensionality. As a result, nonlinear relationships between variables can be
modeled.

Example. Categorical principal components analysis could be used to graphically dis-
play the relationship between job category, job division, region, amount of travel (high,
medium, and low), and job satisfaction. You might find that two dimensions account for
a large amount of variance. The first dimension might separate job category from region,
whereas the second dimension might separate job division from amount of travel. You
also might find that high job satisfaction is related to a medium amount of travel.

Statistics and plots. Frequencies, missing values, optimal scaling level, mode, variance
accounted for by centroid coordinates, vector coordinates, total per variable and per di-
mension, component loadings for vector-quantified variables, category quantifications
and coordinates, iteration history, correlations of the transformed variables and eigen-
values of the correlation matrix, correlations of the original variables and eigenvalues
of the correlation matrix, object scores, category plots, joint category plots, transforma-
tion plots, residual plots, projected centroid plots, object plots, biplots, triplots, and
component loadings plots.

Data. String variable values are always converted into positive integers by ascending
alphanumeric order. User-defined missing values, system-missing values, and values
less than 1 are considered missing; you can recode or add a constant to variables with
values less than 1 to make them nonmissing.
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Assumptions. The data must contain at least three valid cases. The analysis is based on
positive integer data. The discretization option will automatically categorize a fractional-
value variable by grouping its values into categories with a close to “normal” distribution
and will automatically convert values of string variables into positive integers. You can
specify other discretization schemes.

Related procedures. Scaling all variables at the numeric level corresponds to standard
principal components analysis. Alternate plotting features are available by using the
transformed variables in a standard linear principal components analysis. If all variables
have multiple nominal scaling levels, categorical principal components analysis is iden-
tical to homogeneity analysis. If sets of variables are of interest, categorical (nonlinear)
canonical correlation analysis should be used.

To Obtain a Categorical Principal Components Analysis

» From the menus choose:

Analyze
Data Reduction
Optimal Scaling...

Figure 3.1  Optimal Scaling dialog box

Optimal Scaling m
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— Selected Analysiz
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Cateqgoarical Principal Components [CatPCa)

Honlinear Canonical Corelation [OYERALS]

» Select Some variable(s) not multiple nominal.
» Select One set.

» Click Define.
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Figure 3.2  Categorical Principal Components dialog box
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> Select at least two analysis variables and specify the number of dimensions in the

solution.

» Click OK.

You may optionally specify supplementary variables, which are fitted into the solution
found, or labeling variables for the plots.

Define Scale and Weight in CATPCA

You can set the optimal scaling level for analysis variables and supplementary variables.
By default, they are scaled as second-degree monotonic splines (ordinal) with two inte-
rior knots. Additionally, you can set the weight for analysis variables.

Variable weight. You can choose to define a weight for each variable. The value speci-
fied must be a positive integer. The default value is 1.

Optimal Scaling Level. You can also select the scaling level to be used to quantify each

variable.
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Spline ordinal. The order of the categories of the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation is a smooth monotonic piecewise
polynomial of the chosen degree. The pieces are specified by the user-specified num-
ber and procedure-determined placement of the interior knots.

Spline nominal. The only information in the observed variable that is preserved in the
optimally scaled variable is the grouping of objects in categories. The order of the
categories of the observed variable is not preserved. Category points will be on a
straight line (vector) through the origin. The resulting transformation is a smooth,
possibly nonmonotonic, piecewise polynomial of the chosen degree. The pieces are
specified by the user-specified number and procedure-determined placement of the
interior knots.

Multiple nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order of the
categories of the observed variable is not preserved. Category points will be in the
centroid of the objects in the particular categories. Multiple indicates that different
sets of quantifications are obtained for each dimension.

Ordinal. The order of the categories of the observed variable is preserved in the opti-
mally scaled variable. Category points will be on a straight line (vector) through the
origin. The resulting transformation fits better than the spline ordinal transformation
but is less smooth.

Nominal. The only information in the observed variable that is preserved in the opti-
mally scaled variable is the grouping of objects in categories. The order of the cate-
gories of the observed variable is not preserved. Category points will be on a straight
line (vector) through the origin. The resulting transformation fits better than the
spline nominal transformation but is less smooth.

Numeric. Categories are treated as ordered and equally spaced (interval level). The
order of the categories and the equal distances between category numbers of the ob-
served variable are preserved in the optimally scaled variable. Category points will
be on a straight line (vector) through the origin. When all variables are at the numeric
level, the analysis is analogous to standard principal components analysis.
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To Define the Scale and Weight in CATPCA

>

Select a variable in the Analysis Variables list in the Categorical Principal Components
dialog box.

Click Define Scale and Weight.

Figure 3.3  Categorical Principal Components Define Scale and Weight dialog box
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Enter the weight value for the variable.

Select the optimal scaling level to be used in the analysis. If you choose a spline trans-
formation, you must also specify the degree of the polynomial and the number of interior
knots.

Click Continue.

You can alternatively define the scaling level for supplementary variables by selecting
them from the list and clicking Define Scale.
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Categorical Principal Components Discretization

The Discretization dialog box allows you to select a method of recoding your variables.
Fractional-value variables are grouped into seven categories (or into the number of dis-
tinct values of the variable if this number is less than seven) with an approximately nor-
mal distribution, unless specified otherwise. String variables are always converted into
positive integers by assigning category indicators according to ascending alphanumeric
order. Discretization for string variables applies to these integers. Other variables are left
alone by default. The discretized variables are then used in the analysis.

Figure 3.4  Categorical Principal Components Discretization dialog box

Categoncal Principal Components: Discretization

Wariables:
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frig[Grouping Mormal 7) Help
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Method. Choose between grouping, ranking, and multiplying.

* Grouping. Recode into a specified number of categories or recode by interval.

* Ranking. The variable is discretized by ranking the cases.

* Multiplying. The current values of the variable are standardized, multiplied by 10,
rounded, and have a constant added such that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:

* Number of categories. Specify a number of categories and whether the values of the
variable should follow an approximately normal or uniform distribution across those
categories.

 Equal intervals. Variables are recoded into categories defined by these equally sized
intervals. You must specify the length of the intervals.
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Categorical Principal Components Missing Values

The Missing Values dialog box allows you to choose the strategy for handling missing
values in analysis variables and supplementary variables.

Figure 3.5  Categorical Principal Components Missing Values dialog box
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Strategy. Choose to exclude missing values (passive treatment), impute missing values
(active treatment), or exclude objects with missing values (listwise deletion).

» Exclude missing values; for correlations impute after quantification. Objects with
missing values on the selected variable do not contribute to the analysis for this vari-
able. If all variables are given passive treatment, then objects with missing values on
all variables are treated as supplementary. If correlations are specified in the Output
dialog box, then (after analysis) missing values are imputed with the most frequent
category, or mode, of the variable for the correlations of the original variables. For
the correlations of the optimally scaled variables, you can choose the method of im-
putation. Select Mode to replace missing values with the mode of the optimally
scaled variable. Select Extra category to replace missing values with the quantifica-
tion of an extra category. This implies that objects with a missing value on this vari-
able are considered to belong to the same (extra) category.
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 Impute missing values. Objects with missing values on the selected variable have
those values imputed. You can choose the method of imputation. Select Mode to re-
place missing values with the most frequent category. When there are multiple
modes, the one with the smallest category indicator is used. Select Extra category to
replace missing values with the same quantification of an extra category. This im-
plies that objects with a missing value on this variable are considered to belong to the
same (extra) category.

» Exclude objects with missing values on this variable. Objects with missing values
on the selected variable are excluded from the analysis. This strategy is not available
for supplementary variables.

Categorical Principal Components Category Plots

The Category Plots dialog box allows you to specify the types of plots desired and the
variables for which plots will be produced.

Figure 3.6  Categorical Principal Components Category Plots dialog box
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Category Plots. For each variable selected, a plot of the centroid and vector coordinates
is plotted. For variables with multiple nominal scaling levels, categories are in the cen-
troids of the objects in the particular categories. For all other scaling levels, categories
are on a vector through the origin.
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Joint Category Plots. This is a single plot of the centroid and vector coordinates of each
selected variable.

Transformation Plots. Displays a plot of the optimal category quantifications versus the
category indicators. You can specify the number of dimensions desired for variables
with multiple nominal scaling levels; one plot will be generated for each dimension. You
can also choose to display residual plots for each variable selected.

Project Centroids Of. You may choose a variable and project its centroids onto selected
variables. Variables with multiple nominal scaling levels cannot be selected to project
on. When this plot is requested, a table with the coordinates of the projected centroids is
also displayed.

Categorical Principal Components Object and Variable Plots

The Object and Variable Plots dialog box allows you to specify the types of plots desired
and the variables for which plots will be produced.

Figure 3.7  Categorical Principal Components Object and Variable Plots dialog box
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Object points. A plot of the object points is displayed.

Objects and variables (biplot). The object points are plotted with your choice of the vari-
able coordinates—component loadings or variable centroids.

Objects, loadings, and centroids (triplot). The object points are plotted with the cen-
troids of multiple nominal-scaling-level variables and the component loadings of other
variables.

Biplot and Triplot Variables. You can choose to use all variables for the biplots and
triplots, or select a subset.

Label Objects. You can choose to have objects labeled with the categories of selected
variables (you may choose category indicator values or value labels in the Options dialog
box) or with their case numbers. One plot is produced per variable, if Variable is selected.

Categorical Principal Components Loading Plots

The Loading Plots dialog box allows you to specify the variables which will be included
in the plot, and whether or not to include centroids in the plot.

Figure 3.8 Categorical Principal Components Loading Plots dialog box
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Display component loadings. If selected, a plot of the component loadings is displayed.

Loading Variables. You can choose to use all variables for the component loadings plot
or select a subset.
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Include centroids. Variables with multiple nominal scaling levels do not have compo-
nent loadings, but you may choose to include the centroids of those variables in the plot.
You can choose to use all multiple nominal variables or select a subset.

Categorical Principal Components Output

The Output dialog box allows you to produce tables for object scores, component load-
ings, iteration history, correlations of original and transformed variables, the variance
accounted for per variable and per dimension, category quantifications for selected vari-
ables, and descriptive statistics for selected variables.

Figure 3.9  Categorical Principal Components Output dialog box
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Label Object Scores By

Object scores. Displays the object scores and has the following options:

* Include Categories Of. Displays the category indicators of the analysis variables
selected.

* Label Object Scores By. From the list of variables specified as labeling variables, you
can select one to label the objects.

Component loadings. Displays the component loadings for all variables that were not
given multiple nominal scaling levels.
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Iteration history. For each iteration, the variance accounted for, loss, and increase in
variance accounted for are shown.

Correlations of original variables. Shows the correlation matrix of the original variables
and the eigenvalues of that matrix.

Correlations of transformed variables. Shows the correlation matrix of the transformed
(optimally scaled) variables and the eigenvalues of that matrix.

Variance accounted for. Displays the amount of variance accounted for by centroid co-
ordinates, vector coordinates, and total (centroid and vector coordinates combined) per
variable and per dimension.

Category Quantifications. Gives the category quantifications and coordinates for each
dimension of the variable(s) selected.

Descriptive Statistics. Displays frequencies, number of missing values, and mode of the
variable(s) selected.

Categorical Principal Components Save

The Save dialog box allows you to add the transformed variables, object scores, and ap-
proximations to the working data file or as new variables in external files and save the
discretized data as new variables in an external data file.

Figure 3.10 Categorical Principal Components Save dialog box
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Save. Save selections to the working data file. If any variable has been given the multi-
ple nominal scaling level, the number of dimensions to be saved must be specified.

Save to External File. Save selections to a new external file. Specify a filename for each
selected option by clicking File. Each file specified must have a different name.
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Categorical Principal Components Options

The Options dialog box allows you to select the initial configuration, specify iteration
and convergence criteria, select a normalization method, choose the method for labeling
plots, and specify supplementary objects.

Figure 3.11 Categorical Principal Components Options dialog box
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Supplementary Objects. Specify the case number of the object, or the first and last case
numbers of a range of objects, that you want to make supplementary and then click Add.
Continue until you have specified all of your supplementary objects. If an object is spec-
ified as supplementary, then case weights are ignored for that object.

Normalization Method. You can specify one of five options for normalizing the object
scores and the variables. Only one normalization method can be used in a given analysis.

* Variable Principal. This option optimizes the association between variables. The co-
ordinates of the variables in the object space are the component loadings (correlations
with principal components, such as dimensions and object scores). This is useful
when you are primarily interested in the correlation between the variables.

 Object Principal. This option optimizes distances between objects. This is useful
when you are primarily interested in differences or similarities between the objects.

» Symmetrical. Use this normalization option if you are primarily interested in the re-
lation between objects and variables.
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* Independent. Use this normalization option if you want to examine distances be-
tween objects and correlations between variables separately.

» Custom. You can specify any real value in the closed interval [-1, 1]. A value of 1 is
equal to the Object Principal method, a value of 0 is equal to the Symmetrical meth-
od, and a value of —1 is equal to the Variable Principal method. By specifying a value
greater than —1 and less than 1, you can spread the eigenvalue over both objects and
variables. This method is useful for making a tailor-made biplot or triplot.

Criteria. You can specify the maximum number of iterations the procedure can go
through in its computations. You can also select a convergence criterion value. The al-
gorithm stops iterating if the difference in total fit between the last two iterations is less
than the convergence value or if the maximum number of iterations is reached.

Configuration. You can read data from a file containing the coordinates of a configura-
tion. The first variable in the file should contain the coordinates for the first dimension,
the second variable should contain the coordinates for the second dimension, and so on.

* Initial. The configuration in the file specified will be used as the starting point of the
analysis.

* Fixed. The configuration in the file specified will be used to fit in the variables. The
variables that are fitted in must be selected as analysis variables, but because the con-
figuration is fixed, they are treated as supplementary variables (so they do not need
to be selected as supplementary variables).

Label Plots By. Allows you to specify whether variables and value labels or variable
names and values will be used in the plots. You can also specify a maximum length for
labels.

CATPCA Command Additional Features

You can customize your categorical principal components analysis if you paste your se-
lections into a syntax window and edit the resulting CATPCA command syntax. SPSS
command language also allows you to:

* Specify rootnames for the transformed variables, object scores, and approximations
when saving them to the working data file (with the SAVE subcommand).

* Specify a maximum length for labels for each plot separately (with the PLOT
subcommand).

» Specify a separate variable list for residual plots (with the PLOT subcommand).



Nonlinear Canonical Correlation
Analysis (OVERALS)

Nonlinear canonical correlation analysis corresponds to categorical canonical correla-
tion analysis with optimal scaling. The purpose of this procedure is to determine how
similar sets of categorical variables are to one another. Nonlinear canonical correlation
analysis is also known by the acronym OVERALS.

Standard canonical correlation analysis is an extension of multiple regression,
where the second set does not contain a single response variable, but multiple ones. The
goal is to explain as much as possible of the variance in the relationships among two
sets of numerical variables in a low dimensional space. Initially, the variables in each
set are linearly combined such that the linear combinations have a maximal correlation.
Given these combinations, subsequent linear combinations are determined that are
uncorrelated with the previous combinations and that have the largest correlation
possible.

The optimal scaling approach expands the standard analysis in three crucial ways.
First, OVERALS allows more than two sets of variables. Second, variables can be
scaled as either nominal, ordinal, or numerical. As a result, nonlinear relationships
between variables can be analyzed. Finally, instead of maximizing correlations
between the variable sets, the sets are compared to an unknown compromise set defined
by the object scores.

Example. Categorical canonical correlation analysis with optimal scaling could be used
to graphically display the relationship between one set of variables containing job cat-
egory and years of education and another set of variables containing minority classifi-
cation and gender. You might find that years of education and minority classification
discriminate better than the remaining variables. You might also find that years of ed-
ucation discriminates best on the first dimension.

Statistics and plots. Frequencies, centroids, iteration history, object scores, category
quantifications, weights, component loadings, single and multiple fit, object scores
plots, category coordinates plots, component loadings plots, category centroids plots,
transformation plots.

Data. Use integers to code categorical variables (nominal or ordinal scaling level). To
minimize output, use consecutive integers beginning with 1 to code each variable. Vari-
ables scaled at the numerical level should not be recoded to consecutive integers. To

41
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minimize output, for each variable scaled at the numerical level, subtract the smallest
observed value from every value and add 1. Fractional values are truncated after the
decimal.

Assumptions. Variables can be classified into two or more sets. Variables in the analysis
are scaled as multiple nominal, single nominal, ordinal, or numerical. The maximum
number of dimensions used in the procedure depends on the optimal scaling level of the
variables. If all variables are specified as ordinal, single nominal, or numerical, the max-
imum number of dimensions is the minimum of the number of observations minus 1 and
the total number of variables. However, if only two sets of variables are defined, the
maximum number of dimensions is the number of variables in the smaller set. If some
variables are multiple nominal, the maximum number of dimensions is the total number
of multiple nominal categories plus the number of nonmultiple nominal variables minus
the number of multiple nominal variables. For example, if the analysis involves five
variables, one of which is multiple nominal with four categories, the maximum number
of dimensions is (4 + 4 — 1), or 7. If you specify a number greater than the maximum,
the maximum value is used.

Related procedures. If each set contains one variable, nonlinear canonical correlation
analysis is equivalent to principal components analysis with optimal scaling. If each of
these variables is multiple nominal, the analysis corresponds to homogeneity analysis.
If two sets of variables are involved and one of the sets contains only one variable, the
analysis is identical to categorical regression with optimal scaling.

To Obtain a Nonlinear Canonical Correlation Analysis

>

From the menus choose:

Analyze
Data Reduction
Optimal Scaling...
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Figure 4.1 Optimal Scaling dialog box
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Figure 4.2  Nonlinear Canonical Correlation Analysis (OVERALS) dialog box
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Define at least two sets of variables. Select the variable(s) that you want to include in
the first set. To move to the next set, click Next, and select the variables that you want
to include in the second set. You can add additional sets as desired. Click Previous to
return to the previously defined variable set.

Define the value range and measurement scale (optimal scaling level) for each selected
variable.

Click OK.

Optionally, you can:

* Select one or more variables to provide point labels for object scores plots. Each vari-
able produces a separate plot, with the points labeled by the values of that variable.
You must define a range for each of these plot label variables. Using the dialog box,
a single variable cannot be used both in the analysis and as a labeling variable. If la-
beling the object scores plot with a variable used in the analysis is desired, use the
Compute facility on the Transform menu to create a copy of that variable. Use the
new variable to label the plot. Alternatively, command syntax can be used.

* Specify the number of dimensions you want in the solution. In general, choose as few
dimensions as needed to explain most of the variation. If the analysis involves more
than two dimensions, SPSS produces three-dimensional plots of the first three di-
mensions. Other dimensions can be displayed by editing the chart.

Define Range and Scale in OVERALS

You must define a range for each variable. The maximum value specified must be an
integer. Fractional data values are truncated in the analysis. A category value that is
outside of the specified range is ignored in the analysis. To minimize output, use the
Automatic Recode facility on the Transform menu to create consecutive categories
beginning with 1 for variables treated as nominal or ordinal. Recoding to consecutive
integers is not recommended for variables scaled at the numerical level. To minimize
output for variables treated as numerical, for each variable, subtract the minimum
value from every value and add 1.

You must also select the scaling to be used to quantify each variable.

Ordinal. The order of the categories of the observed variable is preserved in the quanti-
fied variable.

Single nominal. Objects in the same category receive the same score. When all variables
are single nominal, the first dimension of this solution is the same as that of the first ho-
mogeneity analysis dimension.
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Multiple nominal. The quantifications can be different for each dimension. When all
variables are multiple nominal and there is only one variable in each set, categorical ca-
nonical correlation analysis with optimal scaling produces the same results as homoge-
neity analysis.

Discrete numeric. Categories are treated as ordered and equally spaced. The differences
between category numbers and the order of the categories of the observed variable are
preserved in the quantified variable. When all variables are at the numerical level and
there are two sets, the analysis is analogous to classical canonical correlation analysis.

To Define an Optimal Scaling Range and Scale in OVERALS

» In the OVERALS dialog box, select one or more variables in the Variables list.

» Click Define Range and Scale.
Figure 4.3 OVERALS Define Range and Scale dialog box
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» Enter the maximum value for the variable. A minimum value of 1 is displayed. This
minimum value cannot be changed.

» Select the measurement (optimal scaling) scale to be used in the analysis.

» Click Continue.

Define Range in OVERALS

You must define a range for each variable used to label the object scores plots. The
maximum value specified must be an integer. Fractional data values are truncated in
the analysis. Labels for category values outside of the specified range for a labeling
variable do not appear in the plots. All cases with such category values are labeled with
a single label corresponding to a data value outside of the defined range.
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To Define an Optimal Scaling Range in OVERALS

» Select a variable for Label Object Scores Plot(s) By in the Nonlinear Canonical Corre-
lation Analysis (OVERALS) dialog box.

» Click Define Range.
Figure 4.4 OVERALS Define Range dialog box
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» Enter the maximum value for the variable. A minimum value of 1 is displayed. This
minimum value cannot be changed.

» Click Continue.

Nonlinear Canonical Correlation Analysis Options

The Options dialog box allows you to select optional statistics and plots, save object
scores as new variables in the working data file, specify iteration and convergence cri-
teria, and specify an initial configuration for the analysis.
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Figure 4.5 OVERALS Options dialog box
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Display. Available statistics include marginal frequencies (counts), centroids, iteration
history, weights and component loadings, category quantifications, object scores, and
single and multiple fit statistics.

Plot. You can produce plots of category coordinates, object scores, component loadings,
category centroids, and transformations.

Save object scores. You can save the object scores as new variables in the working data
file. Object scores are saved for the number of dimensions specified in the main dialog
box.

Use random initial configuration. A random initial configuration should be used if all or
some of the variables are single nominal. If this option is not selected, a nested initial
configuration is used.

Criteria. You can specify the maximum number of iterations the nonlinear canonical cor-
relation analysis can go through in its computations. You can also select a convergence
criterion value. The analysis stops iterating if the difference in total fit between the last
two iterations is less than the convergence value or if the maximum number of iterations
is reached.
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OVERALS Command Additional Features

You can customize your nonlinear canonical correlation analysis if you paste your se-
lections into a syntax window and edit the resulting OVERALS command syntax. SPSS
command language also allows you to:

Specify the dimension pairs to be plotted, rather than plotting all extracted dimen-
sions (using the NDIM keyword on the PLOT subcommand).

Specify the number of value label characters used to label points on the plots (with
the PLOT subcommand).

Designate more than five variables as labeling variables for object scores plots (with
the PLOT subcommand).

Select variables used in the analysis as labeling variables for the object scores plots
(with the PLOT subcommand).

Select variables to provide point labels for the quantification score plot (with the
PLOT subcommand).

Specify the number of cases to be included in the analysis, if you do not want to use
all cases in the working data file (with the NOBSERVATIONS subcommand).

Specify rootnames for variables created by saving object scores (with the SAVE
subcommand).

Specify the number of dimensions to be saved, rather than saving all extracted dimen-
sions (with the SAVE subcommand).

Write category quantifications to a matrix file (using the MATRIX subcommand).

Produce low-resolution plots that may be easier to read than the usual high-resolution
plots (using the SET command).

Produce centroid and transformation plots for specified variables only (with the
PLOT subcommand).



Correspondence Analysis

One of the goals of correspondence analysis is to describe the relationships between
two nominal variables in a correspondence table in a low-dimensional space, while si-
multaneously describing the relationships between the categories for each variable. For
each variable, the distances between category points in a plot reflect the relationships
between the categories with similar categories plotted close to each other. Projecting
points for one variable on the vector from the origin to a category point for the other
variable describe the relationship between the variables.

An analysis of contingency tables often includes examining row and column pro-
files and testing for independence via the chi-square statistic. However, the number of
profiles can be quite large, and the chi-square test does not reveal the dependence struc-
ture. The Crosstabs procedure offers several measures of association and tests of
association but cannot graphically represent any relationships between the variables.

Factor analysis is a standard technique for describing relationships between vari-
ables in a low-dimensional space. However, factor analysis requires interval data, and
the number of observations should be five times the number of variables. Correspon-
dence analysis, on the other hand, assumes nominal variables and can describe the
relationships between categories of each variable, as well as the relationship between
the variables. In addition, correspondence analysis can be used to analyze any table of
positive correspondence measures.

Example. Correspondence analysis could be used to graphically display the relation-
ship between staff category and smoking habits. You might find that with regard to
smoking, junior managers differ from secretaries, but secretaries do not differ from se-
nior managers. You might also find that heavy smoking is associated with junior man-
agers, whereas light smoking is associated with secretaries.

Statistics and plots. Correspondence measures, row and column profiles, singular val-
ues, row and column scores, inertia, mass, row and column score confidence statistics,
singular value confidence statistics, transformation plots, row point plots, column point
plots, and biplots.

Data. Categorical variables to be analyzed are scaled nominally. For aggregated data or
for a correspondence measure other than frequencies, use a weighting variable with
positive similarity values. Alternatively, for table data, use syntax to read the table.
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Assumptions. The maximum number of dimensions used in the procedure depends on
the number of active rows and column categories and the number of equality constraints.
If no equality constraints are used and all categories are active, the maximum dimen-
sionality is one fewer than the number of categories for the variable with the fewest cat-
egories. For example, if one variable has five categories and the other has four, the
maximum number of dimensions is three. Supplementary categories are not active. For
example, if one variable has five categories, two of which are supplementary, and the
other variable has four categories, the maximum number of dimensions is two. Treat all
sets of categories that are constrained to be equal as one category. For example, if a vari-
able has five categories, three of which are constrained to be equal, that variable should
be treated as having three categories when determining the maximum dimensionality.
Two of the categories are unconstrained, and the third category corresponds to the three
constrained categories. If you specify a number of dimensions greater than the maxi-
mum, the maximum value is used.

Related procedures. If more than two variables are involved, use homogeneity analysis.
If the variables should be scaled ordinally, use principal components analysis with opti-
mal scaling.

To Obtain a Correspondence Analysis

>

From the menus choose:

Analyze
Data Reduction
Correspondence Analysis...

Figure 5.1  Correspondence Analysis dialog box
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» Select a row variable.
» Select a column variable.
» Define the ranges for the variables.

» Click OK.

Define Row Range in Correspondence Analysis

You must define a range for the row variable. The minimum and maximum values spec-
ified must be integers. Fractional data values are truncated in the analysis. A category
value that is outside of the specified range is ignored in the analysis.

All categories are initially unconstrained and active. You can constrain row catego-
ries to equal other row categories, or you can define a row category as supplementary.

 Categories must be equal. Categories must have equal scores. Use equality con-
straints if the obtained order for the categories is undesirable or counterintuitive. The
maximum number of row categories that can be constrained to be equal is the total
number of active row categories minus 1. To impose different equality constraints on
sets of categories, use syntax. For example, use syntax to constrain categories 1 and
2 to be equal and categories 3 and 4 to be equal.

 Category is supplemental. Supplementary categories do not influence the analysis
but are represented in the space defined by the active categories. Supplementary cat-
egories play no role in defining the dimensions. The maximum number of supple-
mentary row categories is the total number of row categories minus 2.

To Define a Row Range in Correspondence Analysis

» Select the row variable in the Correspondence Analysis dialog box.

» Click Define Range.
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>
>

>

Figure 5.2 Correspondence Analysis Define Row Range dialog box
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Enter the minimum and maximum values for the row variable.
Click Update.

Click Continue.

Optionally, you can specify equality constraints on the row variable categories and de-
fine categories to be supplementary. For each category to be constrained or supplemen-
tary, select the category from the list of categories generated by Update and choose
Category is supplemental or Categories must be equal. For equality constraints, at least
two categories must be designated as equal.

Define Column Range in Correspondence Analysis

You must define a range for the column variable. The minimum and maximum values
specified must be integers. Fractional data values are truncated in the analysis. A cate-
gory value that is outside of the specified range is ignored in the analysis.

All categories are initially unconstrained and active. You can constrain column cat-
egories to equal other column categories or you can define a column category as
supplementary.

+ Categories must be equal. Categories must have equal scores. Use equality con-
straints if the obtained order for the categories is undesirable or counterintuitive. The
maximum number of column categories that can be constrained to be equal is the to-
tal number of active column categories minus 1. To impose different equality con-
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straints on sets of categories, use syntax. For example, use syntax to constrain
categories 1 and 2 to be equal and categories 3 and 4 to be equal.

+ Category is supplemental. Supplementary categories do not influence the analysis
but are represented in the space defined by the active categories. Supplementary cat-
egories play no role in defining the dimensions. The maximum number of supple-
mentary column categories is the total number of column categories minus 2.

To Define a Column Range in Correspondence Analysis

» Select the column variable in the Correspondence Analysis dialog box.

» Click Define Range.
Figure 5.3  Correspondence Analysis Define Column Range dialog box
Cormezpondence Analysiz: Define Column Range
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Cancel
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dill,

& Mone
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& Category is supplemental

» Enter the minimum and maximum values for the column variable.
» Click Update.

» Click Continue.

Optionally, you can specify equality constraints on the column variable categories and
define categories to be supplementary. For each category to be constrained or supple-
mentary, select the category from the list of categories generated by Update and choose
Category is supplemental or Categories must be equal. For equality constraints, at least
two categories must be designated as equal.
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Correspondence Analysis Model

The Model dialog box allows you to specify the number of dimensions, the distance
measure, the standardization method, and the normalization method.

Figure 54  Correspondence Analysis Model dialog box

Comespondence Analysiz: Model E
Dimensions in salution: IE_

— Distance Measure Cancel |
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" Euclidean _Dl

— Standardization kethod
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& Summetrical " Row principal " Custom: IU
" Erincipal ™ Column principal

Dimensions in solution. Specify the number of dimensions. In general, choose as few
dimensions as needed to explain most of the variation. The maximum number of dimen-
sions depends on the number of active categories used in the analysis and on the equality
constraints. The maximum number of dimensions is the smaller of:

* The number of active row categories minus the number of row categories constrained
to be equal, plus the number of constrained row category sets

* The number of active column categories minus the number of column categories con-
strained to be equal, plus the number of constrained column category sets

Distance Measure. You can select the measure of distance among the rows and columns

of the correspondence table. Choose one of the following alternatives:

* Chi square. Use a weighted profile distance, where the weight is the mass of the rows
or columns. This measure is required for standard correspondence analysis.

* Euclidean. Use the square root of the sum of squared differences between pairs of
rows and pairs of columns.
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Standardization Method. Choose one of the following alternatives:

Row and column means are removed. Both the rows and columns are centered. This
method is required for standard correspondence analysis.

Row means are removed. Only the rows are centered.
Column means are removed. Only the columns are centered.

Row totals are equalized and means are removed. Before centering the rows, the row
margins are equalized.

Column totals are equalized and means are removed. Before centering the columns,
the column margins are equalized.

Normalization Method. Choose one of the following alternatives:

Symmetrical. For each dimension, the row scores are the weighted average of the col-
umn scores divided by the matching singular value, and the column scores are the
weighted average of row scores divided by the matching singular value. Use this
method if you want to examine the differences or similarities between the categories
of the two variables.

Principal. The distances between row points and column points are approximations
of the distances in the correspondence table according to the selected distance mea-
sure. Use this method if you want to examine differences between categories of either
or both variables instead of differences between the two variables.

Row principal. The distances between row points are approximations of the distances
in the correspondence table according to the selected distance measure. The row
scores are the weighted average of the column scores. Use this method if you want
to examine differences or similarities between categories of the row variable.

Column principal. The distances between column points are approximations of the
distances in the correspondence table according to the selected distance measure. The
column scores are the weighted average of the row scores. Use this method if you
want to examine differences or similarities between categories of the column
variable.

Custom. You must specify a value between —1 and 1. A value of -1 corresponds to
column principal. A value of 1 corresponds to row principal. A value of 0 corre-
sponds to symmetrical. All other values spread the inertia over both the row and col-
umn scores to varying degrees. This method is useful for making tailor-made biplots.
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Correspondence Analysis Statistics

The Statistics dialog box allows you to specify the numerical output produced.

Figure 5.5 Correspondence Analysis Statistics dialog box

Correspondence Analysis: Statistics | x|
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Correspondence table. A crosstabulation of the input variables with row and column
marginal totals.

Overview of row points. For each row category, the scores, mass, inertia, contribution to
the inertia of the dimension, and the contribution of the dimension to the inertia of the
point.

Overview of column points. For each column category, the scores, mass, inertia, contri-
bution to the inertia of the dimension, and the contribution of the dimension to the inertia
of the point.

Row profiles. For each row category, the distribution across the categories of the column
variable.

Column profiles. For each column category, the distribution across the categories of the
row variable.

Permutations of the correspondence table. The correspondence table reorganized such
that the rows and columns are in increasing order according to the scores on the first di-
mension. Optionally, you can specify the maximum dimension number for which per-
muted tables will be produced. A permuted table for each dimension from 1 to the
number specified is produced.

Confidence Statistics for Row points. Includes standard deviation and correlations for
all nonsupplementary row points.

Confidence Statistics for Column points. Includes standard deviation and correlations
for all nonsupplementary column points.
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Correspondence Analysis Plots

The Plots dialog box allows you to specify which plots are produced.

Figure 5.6  Correspondence Analysis Plots dialog box
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Scatterplots. Produces a matrix of all pairwise plots of the dimensions. Available scat-
terplots include:

 Biplot. Produces a matrix of joint plots of the row and column points. If principal nor-
malization is selected, the biplot is not available.

* Row points. Produces a matrix of plots of the row points.
* Column points. Produces a matrix of plots of the column points.

Optionally, you can specify how many value label characters to use when labeling the
points. This value must be a non-negative integer less than or equal to 20.

Line plots. Produces a plot for every dimension of the selected variable. Available line

plots include:

» Transformed row categories. Produces a plot of the original row category values
against their corresponding row scores.

» Transformed column categories. Produces a plot of the original column category val-
ues against their corresponding column scores.

Optionally, you can specify how many value label characters to use when labeling the
category axis. This value must be a non-negative integer less than or equal to 20.
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CORRESPONDENCE Command Additional Features

You can customize your correspondence analysis if you paste your selections into a syn-
tax window and edit the resulting CORRESPONDENCE command syntax. SPSS com-
mand language also allows you to:

Specify table data as input instead of using casewise data (using the TABLE = ALL
subcommand).

Specify the number of value-label characters used to label points for each type of
scatterplot matrix or biplot matrix (with the PLOT subcommand).

Specify the number of value-label characters used to label points for each type of line
plot (with the PLOT subcommand).

Write a matrix of row and column scores to an SPSS matrix data file (with the
OUTFILE subcommand).

Write a matrix of confidence statistics (variances and covariances) for the singular
values and the scores to an SPSS matrix data file (with the OUTFILE subcommand).

Specify multiple sets of categories to be equal (with the EQUAL subcommand).



Homogeneity Analysis (HOMALS)

Homogeneity analysis quantifies nominal (categorical) data by assigning numerical
values to the cases (objects) and categories. Homogeneity analysis is also known by the
acronym HOMALS, for homogeneity analysis by means of alternating least squares.

The goal of HOMALS is to describe the relationships between two or more nominal
variables in a low-dimensional space containing the variable categories as well as the
objects in those categories. Objects within the same category are plotted close to each
other, whereas objects in different categories are plotted far apart. Each object is as
close as possible to the category points for categories that contain that object.

Homogeneity analysis is similar to correspondence analysis but is not limited to two
variables. As a result, homogeneity analysis is also known in the literature as multiple
correspondence analysis. Homogeneity analysis can also be viewed as a principal com-
ponents analysis of nominal data.

Homogeneity analysis is preferred over standard principal components analysis
when linear relationships between the variables may not hold or when variables are
measured at a nominal level. Moreover, output interpretation is more straightforward
in HOMALS than in other categorical techniques, such as crosstabulation tables and
loglinear modeling. Because variable categories are quantified, techniques that require
numerical data can be applied to the quantifications in subsequent analyses.

Example. Homogeneity analysis could be used to graphically display the relationship
between job category, minority classification, and gender. You might find that minority
classification and gender discriminate between people, but that job category does not.
You might also find that the Latino and African-American categories are similar to
each other.

Statistics and plots. Frequencies, eigenvalues, iteration history, object scores, category
quantifications, discrimination measures, object scores plots, category quantifications
plots, discrimination measures plots.

Data. All variables are categorical (nominal optimal scaling level). Use integers to code
the categories. To minimize output, use consecutive integers beginning with 1 to code
each variable.

Assumptions. All variables in the analysis have category quantifications that can be
different for each dimension (multiple nominal). Only one set of variables will be used
in the analysis. The maximum number of dimensions used in the procedure is either the
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total number of categories minus the number of variables with no missing data, or the
number of cases minus 1, whichever is smaller. For example, if one variable has five cat-
egories and the other has four (with no missing data), the maximum number of dimen-
sions is seven ((5 + 4) — 2). If you specify a number greater than the maximum, the
maximum value is used.

Related procedures. For two variables, homogeneity analysis is analogous to correspon-
dence analysis. If you believe that variables possess ordinal or numerical properties,
principal components with optimal scaling should be used. If you are interested in sets
of variables, nonlinear canonical correlation analysis should be used.

To Obtain a Homogeneity Analysis

» From the menus choose:

Analyze
Data Reduction
Optimal Scaling...

Figure 6.1  Optimal Scaling dialog box
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» In the Optimal Scaling dialog box, select All variables multiple nominal.
» Select One set.

» Click Define.
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Figure 6.2 Homogeneity Analysis (HOMALS) dialog box
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Select two or more variables.
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Click OK.

Optionally, you can:

* Select one or more variables to provide point labels for object scores plots. Each vari-
able produces a separate plot, with the points labeled by the values of that variable.
You must define a range for each of these plot label variables. Using the dialog box,
a single variable cannot be used both in the analysis and as a labeling variable. If la-
beling the object scores plot with a variable used in the analysis is desired, use the
Compute facility on the Transform menu to create a copy of that variable. Use the
new variable to label the plot. Alternatively, command syntax can be used.

* Specify the number of dimensions you want in the solution. In general, choose as few
dimensions as needed to explain most of the variation. If the analysis involves more
than two dimensions, SPSS produces three-dimensional plots of the first three di-
mensions. Other dimensions can be displayed by editing the chart.
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Define Range in Homogeneity Analysis

You must define a range for each variable. The maximum value specified must be an
integer. Fractional data values are truncated in the analysis. A category value that is out-
side of the specified range is ignored in the analysis. To minimize output, use the Auto-
matic Recode facility on the Transform menu to create consecutive categories beginning
with 1.

You must also define a range for each variable used to label the object scores plots.
However, labels for categories with data values outside of the defined range for the vari-
able do appear on the plots.

To Define an Optimal Scaling Range in Homogeneity Analysis

» Select one or more variables in the Variables list in the Homogeneity Analysis
(HOMALS) dialog box.

» Click Define Range.
Figure 6.3 HOMALS Define Range dialog box

HOMALS: Define Range
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I g I Cancel

Help
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» Enter the maximum value for the variable. A minimum value of 1 is displayed. This
minimum value cannot be changed.

» Click Continue.
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Homogeneity Analysis Options

The Options dialog box allows you to select optional statistics and plots, save object
scores as new variables in the working data file, and specify iteration and convergence
criteria.

Figure 6.4 HOMALS Options dialog box
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Display. These options control what statistics are included in the output. Available sta-
tistics include marginal frequencies, eigenvalues, iteration history, discrimination mea-
sures, category quantifications, and object scores.

Plot. These options produce plots of category quantifications, object scores, and dis-
crimination measures.

Save object scores. You can save the object scores as new variables in the working data
file. Object scores are saved for the number of dimensions specified in the main dialog
box.

Criteria. You can specify the maximum number of iterations the homogeneity analysis
can go through in its computations. You can also select a convergence criterion value.
The homogeneity analysis stops iterating if the difference in total fit between the last two
iterations is less than the convergence value, or if the maximum number of iterations is
reached.



64  Chapter 6

HOMALS Command Additional Features

You can customize your homogeneity analysis if you paste your selections into a syntax
window and edit the resulting HOMALS command syntax. SPSS command language
also allows you to:

Specify the dimension pairs to be plotted, rather than plotting all extracted dimen-
sions (using the NDIM keyword on the PLOT subcommand).

Specify the number of value label characters used to label points on the plots (with
the PLOT subcommand).

Designate more than five variables as labeling variables for object scores plots (with
the PLOT subcommand).

Select variables used in the analysis as labeling variables for the object scores plots
(with the PLOT subcommand).

Select variables to provide point labels for the quantification score plot (with the
PLOT subcommand).

Specify the number of cases to be included in the analysis if you do not want to use
all cases in the working data file (with the NOBSERVATIONS subcommand).

Specify rootnames for variables created by saving object scores (with the SAVE
subcommand).

Specify the number of dimensions to be saved, rather than saving all extracted dimen-
sions (with the SAVE subcommand).

Write category quantifications to a matrix file (using the MATRIX subcommand).

Produce low-resolution plots that may be easier to read than the usual high-resolution
plots (using the SET command).



Multidimensional Scaling
(PROXSCAL)

Multidimensional scaling attempts to find the structure in a set of proximity measures
between objects. This is accomplished by assigning observations to specific locations
in a conceptual low-dimensional space such that the distances between points in the
space match the given (dis)similarities as closely as possible. The result is a least-
squares representation of the objects in that low-dimensional space, which, in many
cases, will help you to further understand your data.

Example. Multidimensional scaling can be very useful in determining perceptual rela-
tionships. For example, when considering your product image, you can conduct a sur-
vey in order to obtain a data set that describes the perceived similarity (or proximity)
of your product to those of your competitors. Using these proximities and independent
variables (such as price), you can try to determine which variables are important to how
people view these products, and adjust your image accordingly.

Statistics and plots. Iteration history, Stress measures, Stress decomposition, coordi-
nates of the common space, object distances within the final configuration, individual
space weights, individual spaces, transformed proximities, transformed independent
variables, Stress plots, common space scatterplots, individual space weight scatter-
plots, individual spaces scatterplots, transformation plots, Shepard residual plots, and
independent variables transformation plots.

Data. Data can be supplied in the form of proximity matrices or variables that are con-
verted into proximity matrices. The matrices may be formatted in columns or across
columns. The proximities may be treated on the ratio, interval, ordinal, or spline scaling
levels.

Assumptions. At least three variables must be specified. The number of dimensions
may not exceed the number of objects minus one. Dimensionality reduction is omitted
if combined with multiple random starts. If only one source is specified, all models are
equivalent to the identity model; therefore, the analysis defaults to the identity model.

Related procedures. Scaling all variables at the numerical level corresponds to stan-
dard multidimensional scaling analysis.
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To Obtain a Multidimensional Scaling

» From the menus choose:

Analyze
Scale
Multidimensional Scaling (PROXSCAL)...

This opens the Data Format dialog box.

Figure 7.1  Multidimensional Scaling Data Format dialog box
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You must specify the format of your data:

Data Format. Specify whether your data consist of proximity measures or you want to
create proximities from the data.

Number of Sources. If your data are proximities, specify whether you have a single
source or multiple sources of proximity measures.

One Source. If there is one source of proximities, specify whether your data set is for-
matted with the proximities in a matrix across the columns or in a single column with
two separate variables to identify the row and column of each proximity.

Multiple Sources. If there are multiple sources of proximities, specify whether the data
set is formatted with the proximities in stacked matrices across columns, in multiple col-
umns with one source per column, or in a single column.
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Proximities in Matrices across Columns

If you select the proximities in matrices data model for either one source or multiple
sources in the Data Format dialog box, the main dialog box will appear as follows:

Figure 7.2 Proximities in Matrices across Columns dialog box
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P> Select three or more proximities variables. Please be sure that the order of the variables
in the list matches the order of the columns of the proximities.

» Optionally, select a number of weights variables equal to the number of proximities
variables. Again, be sure that the order of the weights matches the order of the proxim-
ities they weight.

» If there are multiple sources, optionally, select a sources variable. The number of cases
in each proximities variable should equal the number of proximities variables times the
number of sources.

Additionally, you can define a model for the multidimensional scaling, place restrictions
on the common space, set convergence criteria, specify the initial configuration to be
used, and choose plots and output.
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Proximities in Columns

If you select the multiple columns model for multiple sources in the Data Format dialog
box, the main dialog box will appear as follows:

Figure 7.3  Proximities in Columns dialog box
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> Select two or more proximities variables. Each variable is assumed to be a matrix of
proximities from a separate source.

» Select a rows variable. This defines the row locations for the proximities in each prox-
imities variable.

» Select a columns variable. This defines the column locations for the proximities in each
proximities variable. Cells of the proximity matrix that are not given a row/column des-
ignation are treated as missing.

» Optionally, select a number of weights variables equal to the number of proximities
variables.

Additionally, you can define a model for the multidimensional scaling, place restrictions
on the common space, set convergence criteria, specify the initial configuration to be
used, and choose plots and output.
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Proximities in One Column

If you select the one column model for either one source or multiple sources in the Data
Format dialog box, the main dialog box will appear as follows:

Figure 7.4  Proximities in One Column dialog box

Multidimensional Scaling [Proximities in One Column]
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» Select a proximities variable. It is assumed to be one or more matrices of proximities.

» Select a rows variable. This defines the row locations for the proximities in the proxim-
ities variable.

» Select a columns variable. This defines the column locations for the proximities in the
proximities variable.

» If there are multiple sources, select a sources variable. For each source, cells of the prox-
imity matrix that are not given a row/column designation are treated as missing.

» Optionally, select a weights variable.
Additionally, you can define a model for the multidimensional scaling, place restrictions

on the common space, set convergence criteria, specify the initial configuration to be
used, and choose plots and output.
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Create Proximities from Data

If you choose to create proximities from the data in the Data Format dialog box, the main
dialog box will appear as follows:

Figure 7.5 Create Proximities from Data dialog box

Multidimensional Scaling [Create Proximities from Data)
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» If you create distances between variables (see the Measures dialog box), select at least
three variables. These will be used to create the proximity matrix (or matrices, if there
are multiple sources). If you create distances between cases, only one variable is needed.

» If there are multiple sources, select a sources variable.
» Optionally, choose a measure for creating proximities.
Additionally, you can define a model for the multidimensional scaling, place restrictions

on the common space, set convergence criteria, specify the initial configuration to be
used, and choose plots and output.
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Figure 7.6  Multidimensional Scaling Create Measure from Data dialog box
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Multidimensional scaling uses dissimilarity data to create a scaling solution. If your data
are multivariate data (values of measured variables), you must create dissimilarity data
in order to compute a multidimensional scaling solution. You can specify the details of

creating dissimilarity measures from your data.
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Measure. Allows you to specify the dissimilarity measure for your analysis. Select one
alternative from the Measure group corresponding to your type of data, and then select
one of the measures from the drop-down list corresponding to that type of measure.
Available alternatives are:

* Interval. Euclidean distance, squared Euclidean distance, Chebychev, Block,
Minkowski, or Customized.

* Counts. Chi-square measure or Phi-square measure.

 Binary. Euclidean distance, Squared Euclidean distance, Size difference, Pattern dif-
ference, Variance, or Lance and Williams.

Create Distance Matrix. Allows you to choose the unit of analysis. Alternatives are Be-
tween variables or Between cases.

Transform Values. In certain cases, such as when variables are measured on very differ-
ent scales, you may want to standardize values before computing proximities (not appli-

cable to binary data). Select a standardization method from the Standardize drop-down

list (if no standardization is required, select None).
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Define a Multidimensional Scaling Model

The Model dialog box allows you to specify a scaling model, its minimum and maxi-
mum number of dimensions, the structure of the proximity matrix, the transformation to
use on the proximities, and whether proximities are transformed within each source sep-
arately, or unconditionally on the source.

Figure 7.7 Multidimensional Scaling Model dialog box
Multidimenzional S5caling: Model m
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Scaling Model. Choose from the following alternatives.
* ldentity. All sources have the same configuration.

» Weighted Euclidean. This model is an individual differences model. Each source
has an individual space in which every dimension of the common space is weighted
differentially.

* Generalized Euclidean. This model is an individual differences model. Each source
has an individual space that is equal to a rotation of the common space, followed by
a differential weighting of the dimensions.

» Reduced rank. This is a Generalized Euclidean model for which you can specify the
rank of the individual space. You must specify a rank that is greater than or equal to
1 and less than the maximum number of dimensions.
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Shape. Specify whether the proximities should be taken from the lower-triangular part
or the upper-triangular part of the proximity matrix. You may specify that the full matrix
be used, in which case the weighted sum of the upper-triangular part and the lower-tri-
angular part will be analyzed. In any case, the complete matrix should be specified, in-
cluding the diagonal, though only the specified parts will be used.

Proximities. Specify whether your proximity matrix contains measures of similarity or
dissimilarity.

Proximity Transformations. Choose from the following alternatives.

* Ratio. The transformed proximities are proportional to the original proximities. This
is only allowed for positively valued proximities.

* Interval. The transformed proximities are proportional to the original proximities,
plus an intercept term. The intercept assures all transformed proximities to be
positive.

* Ordinal. The transformed proximities have the same order as the original proximities.
You may specify whether tied proximities should be kept tied or allowed to become
untied.

* Spline. The transformed proximities are a smooth nondecreasing piecewise polyno-
mial transformation of the original proximities. You may specify the degree of the
polynomial and the number of interior knots.

Apply Transformations. Specify whether only proximities within each source are com-
pared with each other, or the comparisons are unconditional on the source.

Dimensions. By default, a solution is computed in two dimensions (Minimum=2, Max-
imum=2). You may choose an integer minimum and maximum from 1 to the number of
objects minus 1, so long as the minimum is less than or equal to the maximum. The pro-
cedure computes a solution in the maximum dimensions and then reduces the dimen-
sionality in steps, until the lowest is reached.
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Multidimensional Scaling Restrictions

The Restrictions dialog box allows you to place restrictions on the common space.

Figure 7.8 Multidimensional Scaling Restrictions dialog box
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Restrictions on Common Space. Specify the type of restriction desired.

* No restrictions. No restrictions are placed on the common space.

» Some coordinates fixed. The first variable selected contains the coordinates of the
objects on the first dimension. The second variable corresponds to coordinates on the
second dimension, and so on. A missing value indicates that a coordinate on a dimen-
sion is free. The number of variables selected must equal the maximum number of
dimensions requested.

* Linear combination of independent variables. The common space is restricted to be
a linear combination of the variables selected.

Restriction Variables. Select the variables that define the restrictions on the common
space. If you specified a linear combination, you may specify an interval, nominal, or-
dinal, or spline transformation for the restriction variables. In either case, the number of
cases for each variable must equal the number of objects.
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Multidimensional Scaling Options

The Options dialog box allows you to select the kind of initial configuration, specify it-

(&

F

ration and convergence criteria, and select standard or relaxed updates.

igure 7.9 Multidimensional Scaling Options dialog box
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Initial Configuration. Choose one of the following alternatives.

Simplex. Objects are placed at the same distance from each other in the maximum di-
mension. One iteration is taken to improve this high-dimensional configuration, fol-
lowed by a dimensionality reduction operation to obtain an initial configuration that has
the maximum number of dimensions that you specified in the Model dialog box.

Torgerson. A classical scaling solution is used as the initial configuration.

Single random start. A configuration is chosen at random.

Multiple random starts. Several configurations are chosen at random, and the solu-
tion with the lowest normalized raw Stress is shown.

Custom. You may select variables that contain the coordinates of your own initial con-
figuration. The number of variables selected should equal the maximum number of
dimensions specified, with the first variable corresponding to coordinates on dimen-
sion 1, the second variable corresponding to coordinates on dimension 2, and so on.
The number of cases in each variable should equal the number of objects.
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Iteration Criteria. Specify the iteration criteria values.

« Stress convergence. The algorithm will stop iterating when the difference in consec-
utive normalized raw Stress values is less than the number specified here, which must
lie between 0.0 and 1.0.

* Minimum stress. The algorithm will stop when the normalized raw Stress falls below
the number specified here, which must lie between 0.0 and 1.0.

* Maximum iterations. The algorithm will perform the number of iterations specified
here, unless one of the above criteria is satisfied first.

» Use relaxed updates. Relaxed updates will speed up the algorithm; these cannot be
used with models other than the identity model, or with restrictions.

Multidimensional Scaling Plots, Version 1

The Plots dialog box allows you to specify which plots will be produced. If you have the
Proximities in Columns data format, the following Plots dialog box is displayed. For In-
dividual space weights, Original vs. transformed proximities, and Transformed proxim-
ities vs. distances plots, you may specify the sources for which the plots should be
produced. The list of available sources is the list of proximities variables in the main di-
alog box.

Figure 7.10 Multidimensional Scaling Plots dialog box, version 1
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Stress. A plot is produced of normalized raw Stress versus dimensions. This plot is pro-
duced only if the maximum number of dimensions is larger than the minimum number
of dimensions.

Common space. A scatterplot matrix of coordinates of the common space is displayed.

Individual spaces. For each source, the coordinates of the individual spaces are dis-
played in scatterplot matrices. This is only possible if one of the individual differences
models is specified in the Model dialog box.

Individual space weights. A scatterplot is produced of the individual space weights.
This is only possible if one of the individual differences models is specified in the Model
dialog box. For the weighted Euclidean model, the weights are printed in plots with one
dimension on each axis. For the generalized Euclidean model, one plot is produced per
dimension, indicating both rotation and weighting of that dimension. The reduced rank
model produces the same plot as the generalized Euclidean model, but reduces the num-
ber of dimensions for the individual spaces.

Original vs. transformed proximities. Plots are produced of the original proximities ver-
sus the transformed proximities.

Transformed proximities vs. distances. The transformed proximities versus the distanc-
es are plotted.

Transformed independent variables. Transformation plots are produced for the indepen-
dent variables.

Variable and dimension correlations. A plot of correlations between the independent
variables and the dimensions of the common space is displayed.
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Multidimensional Scaling Plots, Version 2

The Plots dialog box allows you to specify which plots will be produced. If your data
format is anything other than Proximities in Columns, the following Plots dialog box is
displayed. For Individual spaces weights, Original vs. transformed proximities, and
Transformed proximities vs. distances plots, you may specify the sources for which the
plots should be produced. The source numbers entered must be values of the sources
variable specified in the main dialog box, and range from 1 to the number of sources.

Figure 7.11 Multidimensional Scaling Plots dialog box, version 2
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Multidimensional Scaling Output

The Output dialog box allows you to control the amount of displayed output and save

some of it to separate files.
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Figure 7.12 Multidimensional Scaling Output dialog box
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Display. Select one or more of the following for display.

Common space coordinates. Displays the coordinates of the common space.

Individual space coordinates. The coordinates of the individual spaces are displayed,
only if the model is not the identity model.

Individual space weights. Displays the individual space weights, only if one of the
individual differences models is specified. Depending on the model, the space
weights are decomposed in rotation weights and dimension weights, which are also
displayed.

Distances. Displays the distances between the objects in the configuration.
Transformed proximities. Displays the transformed proximities between the objects
in the configuration.

Input data. Includes the original proximities, and, if present, the data weights, the ini-
tial configuration, and the fixed coordinates or the independent variables.

Stress for random starts. Displays the random number seed and normalized raw
Stress value of each random start.

Iteration history. Displays the history of iterations of the main algorithm.
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Multiple stress measures. Displays different Stress values. The table contains values
for normalized raw Stress, Stress-1, Stress-II, S-Stress, Dispersion Accounted For
(DAF), and Tucker’s Coefficient of Congruence.

Stress decomposition. Displays an objects and sources decomposition of the final
normalized raw Stress, including the average per object and the average per source.

Transformed independent variables. If a linear combination of independent variables
restriction was selected, the transformed independent variables and the correspond-
ing regression weights are displayed.

Variable and dimension correlations. If a linear combination restriction was select-
ed, the correlations between the independent variables and the dimensions of the
common space are displayed.

Save to New File. You can save the common space coordinates, individual space
weights, distances, transformed proximities, and transformed independent variables to
separate SPSS data files.

PROXSCAL Command Additional Features

You can customize your multidimensional scaling of proximities analysis if you paste
your selections into a syntax window and edit the resulting PROXSCAL command syn-
tax. SPSS command language also allows you to:

» Specify separate variable lists for transformations and residuals plots (with the PLOT

subcommand).

* Specify separate source lists for individual space weights, transformations, and resid-

uals plots (with the PLOT subcommand).

» Specify a subset of the independent variables transformation plots to be displayed

(with the PLOT subcommand).



Categorical Regression Examples

The goal of categorical regression with optimal scaling is to describe the relationship
between a response and a set of predictors. By quantifying this relationship, values of
the response can be predicted for any combination of predictors.

In this chapter, two examples serve to illustrate the analyses involved in optimal
scaling regression. The first example uses a small data set to illustrate the basic con-
cepts. The second example uses a much larger set of variables and observations in a
practical example.

Example 1: Carpet Cleaner Data

In a popular example by Green and Wind (1973), a company interested in marketing a
new carpet cleaner wants to examine the influence of five factors on consumer prefer-
ence—package design, brand name, price, a Good Housekeeping seal, and a money-
back guarantee. There are three factor levels for package design, each one differing in
the location of the applicator brush; three brand names (K2R, Glory, and Bissell); three
price levels; and two levels (either no or yes) for each of the last two factors. Table 8.1
displays the variables used in the carpet-cleaner study, with their variable labels and
values.

Table 8.1 Explanatory variables in the carpet-cleaner study

Variable label Value labels
package Package design A*, B*, C*
brand Brand name K2R, Glory, Bissell
price Price $1.19, $1.39, $1.59
seal Good Housekeeping seal No, yes
money Money-back guarantee No, yes

Ten consumers rank 22 profiles defined by these factors. The variable pref contains the
rank of the average rankings for each profile. Low rankings correspond to high
preference. This variable reflects an overall measure of preference for each profile.
Using categorical regression, you will explore how the five factors in Table 8.1 are
related to preference. This data set can be found in carpet.sav.
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A Standard Linear Regression Analysis

To produce standard linear regression output, from the menus choose:

Analyze
Regression
Linear...

P Dependent: pref
» Independent(s): package, brand, price, seal, money

Statistics...
O Descriptives (deselect)

Save...

Residuals
M Standardized

The standard approach for describing the relationships in this problem is linear regres-
sion. The most common measure of how well a regression model fits the data is R°. This
statistic represents how much of the variance in the response is explained by the weighted
combination of predictors. The closer R?is to 1, the better the model fits. Regressing pref
on the five predictors results in an R? of 0.707, indicating that approximately 71% of the
variance in the preference rankings is explained by the predictor variables in the linear
regression.

Figure 8.1 Model summary for standard linear regression

Adjusted | Std. Error of
Model R R Square | R Square | the Estimate

1 .841 707 .615 3.9981

The standardized coefficients are shown in Figure 8.2. The sign of the coefficient indi-
cates whether the predicted response increases or decreases when the predictor increas-
es, all other predictors being constant. For categorical data, the category coding
determines the meaning of an increase in a predictor. For instance, an increase in money,
package, or seal will result in a decrease in predicted preference ranking. money is coded
1 for no money-back guarantee and 2 for money-back guarantee. An increase in money
corresponds to the addition of a money-back guarantee. Thus, adding a money-back
guarantee reduces the predicted preference ranking, which corresponds to an increased
predicted preference.
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Figure 8.2 Regression coefficients

Standardized
Coefficients
Model Beta t Sig.
1 (Constant) 4.352 .000
Package design -.560 -4.015 .001
Brand name .056 407 .689
Price .366 2.681 .016
Good Housekeeping seal -.330 -2.423 .028
Money-back guarantee -.197 -1.447 167

The value of the coefficient reflects the amount of change in the predicted preference
ranking. Using standardized coefficients, interpretations are based on the standard devi-
ations of the variables. Each coefficient indicates the number of standard deviations that
the predicted response changes for a one standard deviation change in a predictor, all
other predictors remaining constant. For example, a one standard deviation change in
brand yields an increase in predicted preference of 0.056 standard deviations. The stan-
dard deviation of pref is 6.44, so pref increases by 0.056 x 6.44 = 0.361 . Changes in
package yield the greatest changes in predicted preference.

A regression analysis should always include an examination of the residuals. To
produce residual plots, from the menus choose:

Graphs
Scatter...

Select Simple. Click Define.

» Y Axis: zre_I
» X Axis: zpr_1

Then, recall the Simple Scatterplot dialog box and click Reset to clear the previous
selections.

» Y Axis: zre_I
P X Axis: package

The standardized residuals are plotted against the standardized predicted values in
Figure 8.3. No patterns should be present if the model fits well. Here you see a U-shape
in which both low and high standardized predicted values have positive residuals. Stan-
dardized predicted values near O tend to have negative residuals.
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Figure 8.3 Residuals versus predicted values
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This shape is more pronounced in the plot of the standardized residuals against package
in Figure 8.4. Every residual for Design B* is negative, whereas all but one of the resid-

uals is positive for the other two designs. Because the regression model fits one param-
eter for each variable, the relationship cannot be captured by the standard approach.

Figure 8.4 Residuals versus package
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A Categorical Regression Analysis

The categorical nature of the variables and the nonlinear relationship between pref and
package suggest that regression on optimal scores may perform better than standard re-
gression. The U-shape of Figure 8.4 indicates that a nominal treatment of package
should be used. All other predictors will be treated at the numerical scaling level.
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The response variable warrants special consideration. You want to predict the values
of pref. Thus, recovering as many properties of its categories as possible in the quanti-
fications is desirable. Using an ordinal or nominal scaling level ignores the differences
between the response categories. However, linearly transforming the response catego-
ries preserves category differences. Consequently, scaling the response numerically is
generally preferred and will be employed here.

To produce the following categorical regression output, from the menus choose:

Analyze
Regression
Optimal Scaling...

» Dependent: pref
» Independent(s): package, brand, price, seal, money

Select pref. Click Define Scale.

Optimal Scaling Level
®© Numeric

Select package. Click Define Scale.
Optimal Scaling Level
®© Nominal
Select brand, price, seal, and money. Click Define Scale.
Optimal Scaling Level
®© Numeric
Output...
Display
M Correlations of original predictors
M Correlations of transformed predictors

[0 Frequencies (deselect)
O ANOVA table (deselect)

Save...
Save to Working File
M Transformed variables
M Residuals
Plots...
» Transformation Plots: package, price
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Intercorrelations

The intercorrelations among the predictors are useful for identifying multicollinearity in
the regression. Variables that are highly correlated will lead to unstable regression esti-
mates. However, due to their high correlation, omitting one of them from the model only
minimally affects prediction. The variance in the response that can be explained by the
omitted variable is still explained by the remaining correlated variable. However, zero-
order correlations are sensitive to outliers and also cannot identify multicollinearity due
to a high correlation between a predictor and a combination of other predictors.

Figure 8.5 and Figure 8.6 show the intercorrelations of the predictors for both the
untransformed and transformed predictors. All values are near 0, indicating that multi-
collinearity between individual variables is not a concern.

Notice that the only correlations that change involve package. Because all other pre-
dictors are treated numerically, the differences between the categories and the order of
the categories are preserved for these variables. Consequently, the correlations cannot
change.

Figure 8.5 Original predictor correlations

Good
Package Brand Housekeeping | Money-back
design name Price seal guarantee
Package design 1.000 -.189 -.126 .081 .066
Brand name -.189 1.000 .065 -.042 -.034
Price -.126 .065 1.000 .000 .000
Good
Housekeeping .081 -.042 .000 1.000 -.039
seal
Money-back 066 -.034 000 -.039 1.000
guarantee
Figure 8.6  Transformed predictor correlations
Good
Package Brand Housekeeping | Money-back
design name Price seal guarantee
Package design 1.000 -.156 -.089 .032 1102
Brand name -.156 1.000 .065 -.042 -.034
Price -.089 .065 1.000 .000 .000
Good
Housekeeping .032 -.042 .000 1.000 -.039
seal
Money-back 102 | -034 | 000 -039 1.000
guarantee
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Model Fit and Coefficients

The Categorical Regression procedure yields an R? 0f 0.948, indicating that almost 95%
of the variance in the transformed preference rankings is explained by the regression on
the optimally transformed predictors. Transforming the predictors improves the fit over
the standard approach.

Figure 8.7 Model summary for categorical regression

Adjusted
Multiple R | R Square | R Square
974 .948 .932

Figure 8.8 shows the standardized regression coefficients. Categorical regression stan-
dardizes the variables, so only standardized coefficients are reported. These values are
divided by their corresponding standard errors, yielding an F test for each variable.
However, the test for each variable is contingent upon the other predictors being in the
model. In other words, the test determines if omission of a predictor variable from the
model with all other predictors present significantly worsens the predictive capabilities
of the model. These values should not be used to omit several variables at one time for
a subsequent model. Moreover, alternating least squares optimizes the quantifications,
implying that these tests must be interpreted conservatively.

Figure 8.8  Standardized coefficients for transformed predictors

Standardized
Coefficients
Beta Std. Error F

Package design -.748 .058 165.495
Brand name 4.530E-02 .058 .614
Price .371 .057 41.986
Good Housekeeping seal -.350 .057 37.702
Money-back guarantee -.159 .057 7.669

The largest coefficient occurs for package. A one standard deviation increase in package
yields a 0.748 standard deviation decrease in predicted preference ranking. However,
package is treated nominally, so an increase in the quantifications need not correspond
to an increase in the original category codes.

Standardized coefficients are often interpreted as reflecting the importance of each
predictor. However, regression coefficients cannot fully describe the impact of a pre-
dictor or the relationships between the predictors. Alternative statistics must be used
in conjunction with the standardized coefficients to fully explore predictor effects.
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Correlational Analyses

To interpret the contributions of the predictors to the regression, it is not sufficient to
only inspect the regression coefficients. In addition, the correlations, partial correla-
tions, and part correlations should be inspected. Figure 8.9 contains these correlational
measures for each variable.

The zero-order correlation is the correlation between the transformed predictor and
the transformed response. For this data, the largest correlation occurs for package. How-
ever, if you can explain some of the variation in either the predictor or the response, you
will get a better representation of how well the predictor is doing.

Figure 8.9  Zero-order, part, and partial correlations (transformed variables)

Correlations
Zero-Order Partial Part
Package design -.816 -.955 -.733
Brand name .206 192 .045
Price 441 .851 .369
Good Housekeeping seal -.370 -.838 -.350
Money-back guarantee -.223 -.569 -.158

Other variables in the model can confound the performance of a given predictor in pre-
dicting the response. The partial correlation coefficient removes the linear effects of
other predictors from both the predictor and the response. This measure equals the cor-
relation between the residuals from regressing the predictor on the other predictors and
the residuals from regressing the response on the other predictors. The squared partial
correlation corresponds to the proportion of the variance explained relative to the resid-
ual variance of the response remaining after removing the effects of the other variables.
For example, in Figure 8.9, package has a partial correlation of —0.955. Removing the
effects of the other variables, package explains (-0.955)° = 0.91 = 91% of the vari-
ation in the preference rankings. Both price and seal also explain a large portion of vari-
ance if the effects of the other variables are removed.

Figure 8.10 displays the partial correlations for the untransformed variables. All of
the partial correlations increase when optimal scores are used. In the standard approach,
package explained 50% of the variation in pref when other variable effects were
removed from both. In contrast, package explains 91% of the variation if optimal scaling
is used. Similar results occur for price and seal.
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Figure 8.10 Zero-order, part, and partial correlations (untransformed variables)

Correlations

Model Zero-order Partial Part

1 (Constant)
Package design -.657 -.708 -.544
Brand name .206 101 .055
Price 440 .557 .363
Good Housekeeping seal -.370 -.518 -.328
Money-back guarantee -.223 -.340 -.196

As an alternative to removing the effects of variables from both the response and a pre-
dictor, you can remove the effects from just the predictor. The correlation between the
response and the residuals from regressing a predictor on the other predictors is the part
correlation. Squaring this value yields a measure of the proportion of variance explained
relative to the total variance of response. From Figure 8.9, if you remove the effects of
brand, seal, money, and price from package, the remaining part of package explains
(-0.733)* = 0.54 = 54% of the variation in preference rankings.

Importance

In addition to the regression coefficients and the correlations, Pratt’s measure of relative
importance (Pratt, 1987) aids in interpreting predictor contributions to the regression.
Large individual importances relative to the other importances correspond to predictors
that are crucial to the regression. Also, the presence of suppressor variables is signaled
by a low importance for a variable that has a coefficient of similar size to the important
predictors.

Figure 8.11 displays the importances for the carpet cleaner predictors. In contrast to
the regression coefficients, this measure defines the importance of the predictors addi-
tively—that is, the importance of a set of predictors is the sum of the individual
importances of the predictors. Pratt’s measure equals the product of the regression coef-
ficient and the zero-order correlation for a predictor. These products add to R?, so they
are divided by R?, yielding a sum of one. The set of predictors package and brand, for
example, have an importance of 0.654. The largest importance corresponds to package,
with package, price, and seal accounting for 95% of the importance for this combination
of predictors.
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Multicollinearity

Large correlations between predictors will dramatically reduce a regression model’s sta-
bility. Correlated predictors result in unstable parameter estimates. Tolerance reflects
how much the independent variables are linearly related to one another. This measure is
the proportion of a variable's variance not accounted for by other independent variables
in the equation. If the other predictors can explain a large amount of a predictor’s vari-
ance, that predictor is not needed in the model. A tolerance value near 1 indicates that
the variable cannot be predicted very well from the other predictors. In contrast, a vari-
able with a very low tolerance contributes little information to a model, and can cause
computational problems. Moreover, large negative values of Pratt’s importance measure
indicate multicollinearity.

Figure 8.11 shows the tolerance for each predictor. All of these measures are very
high. None of the predictors are predicted very well by the other predictors and multi-
collinearity is not present.

Figure 8.11 Predictor tolerances and importances

Tolerance
After Before
Importance | Transformation | Transformation
Package design .644 .959 942
Brand name .010 971 .961
Price A72 .989 .982
Good Housekeeping seal 137 .996 991
Money-back guarantee .037 .987 .993

Transformation Plots

Plotting the original category values against their corresponding quantifications can
reveal trends that might not be noticed in a list of the quantifications. Such plots are com-
monly referred to as transformation plots. Attention should be given to categories that re-
ceive similar quantifications. These categories affect the predicted response in the same
manner. However, the transformation type dictates the basic appearance of the plot.

Variables treated as numerical result in a linear relationship between the quantifica-
tions and the original categories, corresponding to a straight line in the transformation
plot. The order and the difference between the original categories is preserved in the
quantifications.
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The order of the quantifications for variables treated as ordinal correspond to the
order of the original categories. However, the differences between the categories are not
preserved. As a result, the transformation plot is nondecreasing but need not be a straight
line. If consecutive categories correspond to similar quantifications, the category dis-
tinction may be unnecessary and the categories could be combined. Such categories
result in a plateau on the transformation plot. However, this pattern can also result from
imposing an ordinal structure on a variable that should be treated as nominal. If a sub-
sequent nominal treatment of the variable reveals the same pattern, combining
categories is warranted. Moreover, if the quantifications for a variable treated as ordinal
fall along a straight line, a numerical transformation may be more appropriate.

For variables treated as nominal, the order of the categories along the horizontal axis
corresponds to the order of the codes used to represent the categories. Interpretations of
category order or of the distance between the categories is unfounded. The plot can
assume any nonlinear or linear form. If an increasing trend is present, an ordinal treat-
ment should be attempted. If the nominal transformation plot displays a linear trend, a
numerical transformation may be more appropriate.

Figure 8.12 displays the transformation plot for price, which was treated as numerical.
Notice that the order of the categories along the straight line correspond to the order of the
original categories. Also, the difference between the quantifications for $7.19 and $1.39
(=1.173 and 0) is the same as the difference between the quantifications for $7.39 and
$1.59 (0 and 1.173). The fact that categories 1 and 3 are the same distance from category
2 is preserved in the quantifications.

Figure 8.12 Transformation plot for price (numerical)
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The nominal transformation of package yields the transformation plot in Figure 8.13.
Notice the distinct nonlinear shape in which the second category has the largest quanti-
fication. In terms of the regression, the second category decreases predicted preference
ranking, whereas the first and third categories have the opposite effect.

Figure 8.13 Transformation plot for package (nominal)
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Residual Analysis

Using the transformed data and residuals that you saved to the working file allows you
to create a scatterplot like the one in Figure 8.4.

To obtain such a scatterplot, recall the Simple Scatterplot dialog box and click Reset
to clear your previous selections and restore the default options.

DY Axis: res_1
» X Axis: tra2_1

Figure 8.14 shows the standardized residuals plotted against the optimal scores for
package. All of the residuals are within two standard deviations of 0. A random scatter
of points replaces the U-shape present in Figure 8.4. Predictive abilities are improved
by optimally quantifying the categories.
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Figure 8.14 Residuals for categorical regression
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Example 2: Ozone Data

In this example, you will use a larger set of data to illustrate the selection and effects of optimal
scaling transformations. The data include 330 observations on six meteorological variables
analyzed by Breiman and Friedman (1985), and Hastie and Tibshirani (1990), among others.
Table 8.2 describes the original variables. Your categorical regression attempts to predict the
ozone concentration from the remaining variables. Previous researchers found nonlinearities
among these variables, which hinder standard regression approaches.

Table 8.2

Variable
ozon
ibh

dpg

Vis
temp
doy

Original variables

Description

daily ozone level; categorized into one of 38 categories
inversion base height

pressure gradient (mm Hg)

visibility (miles)

temperature (degrees F)

day of the year

This data set can be found in ozone.sav.
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Categorizing Variables

In many analyses, variables need to be categorized or recoded before a categorical re-
gression can be performed. For example, the Categorical Regression procedure trun-
cates any decimals and treats negative values as missing. If either of these applications
is undesirable, the data must be recoded before performing the regression. Moreover, if
a variable has more categories than is practically interpretable, you should modify the
categories before the analysis to reduce the category range to a more manageable num-
ber.

The variable doy has a minimum value of 3 and a maximum value of 365. Using this
variable in a categorical regression corresponds to using a variable with 365 categories.
Similarly, vis ranges from O to 350. To simplify analyses, divide each variable by 10,
add 1, and round the result to the nearest integer. The resulting variables, denoted ddoy
and dvis, have only 38 and 36 categories respectively, and are consequently much easier
to interpret.

The variable ibh ranges from 111 to 5000. A variable with this many categories
results in very complex relationships. However, dividing by 100 and rounding the result
to the nearest integer yields categories ranging from 1 to 50 for the variable dibh. Using
a 50-category variable rather than a 5000-category variable simplifies interpretations
significantly.

Categorizing dpg differs slightly from categorizing the previous three variables. This
variable ranges from —69 to 107. The procedure omits any categories coded with nega-
tive numbers from the analysis. To adjust for the negative values, add 70 to all
observations to yield a range from 1 to 177. Dividing this range by 10 and adding 1
results in ddpg, a variable with categories ranging from 1 to 19.

The temperatures for femp range from 25 to 93 on the Fahrenheit scale. Converting
to Celsius and rounding yields a range from —4 to 34. Adding 5 eliminates all negative
numbers and results in fempc, a variable with 39 categories.
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To compute the new variables as suggested, from the menus choose:

Transform
Compute...

Target Variable: ddoy
Numeric Expression: RND(doy/10 +1)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.
Target Variable: dvis

Numeric Expression: RND(vis/10 +1)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.
Target Variable: dibh

Numeric Expression: RND(ibh/100)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.
Target Variable: ddpg

Numeric Expression: RND((dpg+70)/10 +1)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.

Target Variable: tempc
Numeric Expression: RND((temp-32)/1.8) +5

As described above, different modifications for variables may be required before con-
ducting a categorical regression. The divisors used here are purely subjective. If you
desire fewer categories, divide by a larger number. For example, doy could have been
divided into months of the year or seasons.

Selection of Transformation Type

Each variable can be analyzed at one of three different levels. However, because predic-
tion of the response is the goal, you should scale the response “as is” by employing the
numerical optimal scaling level. Consequently, the order and the differences between
categories will be preserved in the transformed variable.
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To obtain a categorical regression in which the dependent variable is scaled at the nu-
merical level and the independent variables are scaled at the nominal level, from the
menus choose:

Analyze

Regression
Optimal Scaling...

Dependent: ozon
Independent(s): ddpg, ddoy, dibh, dvis, tempc

Select ozon. Click Define Scale.
Optimal Scaling Level
®© Numerical
Select ddpg, ddoy, dibh, dvis, and tempc. Click Define Scale.
Optimal Scaling Level
® Nominal
Output...
Display
O ANOVA table (deselect)
Plots...
P Transformation Plots: ddpg, ddoy, dibh, dvis, tempc

Treating all predictors as nominal yields an R? of 0.883. This large amount of variance
accounted for is not surprising because nominal treatment imposes no restrictions on the
quantifications. However, interpreting the results can be quite difficult.

Figure 8.15 Model summary

Adjusted
Multiple R | R Square | R Square
.940 .883 .881

Figure 8.16 shows the standardized regression coefficients of the predictors. A common
mistake made when interpreting these values involves focusing on the coefficients while
neglecting the quantifications. You cannot assert that the large positive value of the
tempc coefficient implies that as tempc increases, predicted ozon increases. Similarly,
the negative coefficient for dibh does not suggest that as dibh increases, predicted ozon
decreases. All interpretations must be relative to the transformed variables. As the quan-
tifications for tempc increase, or as the quantifications for dibh decrease, predicted ozon
increases. To examine the effects of the original variables, you must relate the categories
to the quantifications.
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Figure 8.16 Regression coefficients (all predictors nominal)

Standardized
Coefficients
Beta Std. Error F Importance

DDOY -.340 .020 279.077 110
DVIS -.199 .019 104.087 .073
DIBH -.264 .020 175.887 144
DDPG .249 .020 152.275 .041
TEMPC .681 .020 1124.375 .631

Figure 8.17 displays the transformation plot for ddpg. The initial categories (1 through
7) receive small quantifications and thus have minimal contributions to the predicted
response. Categories 8 through 10 receive somewhat higher, positive values, resulting
in a moderate increase in predicted ozon. The quantifications decrease up to category
17, where ddpg has its greatest decreasing effect on predicted ozon. Although the line
increases after this category, using an ordinal scaling level for ddpg may not signifi-
cantly reduce the fit, while simplifying the interpretations of the effects. However, the
importance measure of 0.04 and the regression coefficient for ddpg indicates that this
variable is not very useful in the regression.

Figure 8.17 Transformation plot for ddpg (nominal)
2
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The transformation plots for dvis and dibh (Figure 8.18 and Figure 8.19) show no appar-
ent pattern. As evidenced by the jagged nature of the plots, moving from low categories
to high categories yields fluctuations in the quantifications in both directions. Thus,
describing the effects of these variables requires focusing on the individual categories.
Imposing ordinal or linear restrictions on the quantifications for either of these variables
might significantly reduce the fit.
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Figure 8.18 Transformation plot for dvis (nominal)

Quantification of DVIS

1 5 9 13 17 21 25 20 33

DVIS

Figure 8.19 Transformation plot for dibh (nominal)

Quantification of DIBH

1 6 11 16 21 26 31 36 41 46

DIBH

Figure 8.20 shows the transformation plot for ddoy. In contrast to Figure 8.18, this plot
displays a pattern. The quantifications tend to decrease up to category 21, at which point
they tend to increase, yielding a U-shape. Considering the sign of the regression coeffi-
cient for ddoy, the initial categories (1 through 5) receive quantifications that have a
decreasing effect on predicted ozon. From category 6 onward, the effect of the quantifi-
cations on predicted ozon gets more increasing, reaching a maximum around category
21. Beyond category 21, the quantifications tend to decrease the predicted ozon.
Although the line is quite jagged, the general shape is still identifiable.
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Figure 8.20 Transformation plot for ddoy (nominal)
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The transformation plot for tempc (Figure 8.21) displays an alternative pattern. As the
categories increase, the quantifications tend to increase. As a result, as fempc increases,
predicted ozon tends to increase. This pattern suggests scaling tempc at the ordinal level.

Figure 8.21 Transformation plot for tempc (nominal)
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Thus, the transformation plots suggest scaling fempc at the ordinal level while keeping
all other predictors nominally scaled. To recompute the regression, scaling tempc at the
ordinal level, recall the Categorical Regression dialog box.

Select tempc. Click Define Range and Scale.

Optimal Scaling Level
® Ordinal

Options...
M Save transformed data

Plot...
P Plot: tempc

This model results in an RZ of 0.873, so the variance accounted for decreases negligibly
when the quantifications for rempc are restricted to be ordered.

Figure 8.22 Model summary for regression with tempc ordinal

Adjusted
Multiple R | R Square | R Square
.934 .873 .871

Figure 8.23 displays the coefficients, correlations, and importances. Comparing the
coefficients to those in Figure 8.16, no large changes occur. The importance measures
suggest that tempc is still much more important to the regression than the other vari-
ables. Now, however, as a result of the ordinal scaling level of fempc and the positive
regression coefficient, you can assert that as tempc increases, predicted ozon increases.

Figure 8.23 Coefficients and importances

Standardized

Coefficients
Beta Std. Error F Importance
DVIS -197 .020 95.122 .072
DIBH -.269 .021 164.501 151
DDPG .240 .021 128.980 .034
TEMPC .686 .021 | 1037.918 .642
DDOY -.337 .021 253.566 101

The transformation plot in Figure 8.24 illustrates the ordinal restriction on the quantifi-
cations for tempc. The jagged line in Figure 8.21 is here replaced by a smooth increasing
line. Moreover, no long plateaus are present, indicating that collapsing categories is not
needed.
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Figure 8.24 Transformation plot for tempc (ordinal)
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Optimality of the Quantifications

As stated previously, the transformed variables from a categorical regression can be used
in a standard linear regression, yielding identical results. However, the quantifications are
optimal only for the model that produced them. Using a subset of the predictors in linear
regression does not correspond to an optimal scaling regression on the same subset.

For example, the categorical regression that you have computed has an R? of 0.873.
You have saved the transformed variables, so in order to fit a linear regression using
only tempc, dvis, and dibh as predictors, from the menus choose:

Analyze

Regression
Linear...

» Dependent: trans1_1
» Independent(s): trans2_1, trans3_1, trans5_1

Statistics...
O Descriptives (deselect)

Regression Coefficients
O Estimates (deselect)
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Figure 8.25 Model summary for regression with subset of optimally scaled predictors

Adjusted | Std. Error of
Model R R Square | R Square | the Estimate

1 .870 757 .755 4962

Using the quantifications for the response, tempc, dvis, and dibh in a standard linear
regression results in a fit of 0.757. To compare this to the fit of a categorical regression
using just those three predictors, recall the Categorical Regression dialog box:

» Independent(s): tempc, dvis, dibh
Options...

Display

O Coefficients (deselect)

[0 Save transformed data (deselect)
Plot...

P Plot: (blank)

Figure 8.26 Model summary for categorical regression on three predictors

Adjusted
Multiple R | R Square | R Square
.889 791 .789

The categorical regression analysis has a fit of 0.791, which is better than the fit of 0.757.
This demonstrates the property of the scalings that the quantifications obtained in the
original regression are only optimal when all five variables are included in the model.

Effects of Transformations

Transforming the variables makes a nonlinear relationship between the original re-
sponse and the original set of predictors linear for the transformed variables. However,
when there are multiple predictors, pairwise relationships are confounded by the other
variables in the model.
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To focus your analysis on the relationship between ozon and ddoy, begin by looking at
a scatterplot. From the menus choose:

Graphs
Scatter...

Select Simple. Click Define.

» Y Axis: ozon
» X Axis: ddoy

Figure 8.27 illustrates the relationship between ozon and ddoy. As ddoy increases to
approximately 25, ozon increases. However, for ddoy values greater than 25, ozon de-
creases. This inverted U pattern suggests a quadratic relationship between the two
variables. A linear regression cannot capture this relationship.

Figure 8.27 Scatterplot of ozon and ddoy

40

OZON

By excluding the other variables from the model, you can focus on the relationship be-
tween ozon and ddoy. However, all interpretations based on the reduced model apply
only to the reduced model. Do not generalize the results to the regression involving all
predictors.

To obtain a standard linear regression of ozon on ddoy, recall the Linear Regression
dialog box:

» Dependent: ozon
P Independent(s): ddoy



104 Chapter 8

Figure 8.28 Model summary for linear regression of ozon on ddoy

Adjusted | Std. Error of
Model R R Square | R Square | the Estimate

1 .066 .004 .001 8.0057

The regression of ozon on ddoy yields an R? of 0.004. This fit suggests that ddoy has no
predictive value for ozon. This is not surprising, given the pattern in Figure 8.27. By using
optimal scaling, however, you can linearize the quadratic relationship and use the trans-
formed ddoy to predict the response.

To obtain a categorical regression of ozon on ddoy, recall the Categorical Regression
dialog box:

» Independent(s): ddoy

Select ddoy. Click Define Scale.

Optimal Scaling
®© Nominal

Save...
M Transformed variables

Plots...
P Transformation Plots: ddoy

Figure 8.29 Model summary for categorical regression of ozon on ddoy

Adjusted
Multiple R | R Square | R Square
.750 .562 .561

The optimal scaling regression treats ozon as numerical and ddoy as nominal. This
results in an R” of 0.562. Although only 56% of the variation in ozon is accounted for
by the categorical regression, this is a substantial improvement over the original regres-
sion. Transforming ddoy allows for the prediction of ozon.

Figure 8.30 displays the transformation plot for ddoy. The extremes of ddoy both
receive negative quantifications, whereas the central values have positive quantifica-
tions. By applying this transformation, the low and high ddoy values have similar effects
on predicted ozon.
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Figure 8.30 Transformation plot for ddoy (nominal)

3

2

2

Quantification of DDOY

-3

1 5 9 13 17 21 25 29 33 37
DDOY

To see a scatterplot of the transformed variables, recall the Simple Scatterplot dialog
box, and click Reset to clear your previous selections.

»Y Axis: tral_2
» X Axis: tra2_2

Figure 8.31 depicts the relationship between the transformed variables. An increasing
trend replaces the inverted U in Figure 8.27. The regression line has a slope of 0.750,
indicating that as transformed ddoy increases, predicted ozon increases. Using optimal
scaling linearizes the relationship and allows interpretations that would otherwise go
unnoticed.

Figure 8.31 Scatterplot of the transformed variables
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Categorical Principal Components
Analysis Examples

Categorical principal components analysis can be thought of as a method of dimension
reduction. A set of variables is analyzed to reveal major dimensions of variation. The
original data set can then be replaced by a new, smaller data set with minimal loss of
information. The method reveals relationships among variables, among cases, and
among variables and cases.

The criterion used by categorical principal components analysis for quantifying the
observed data is that the object scores (component scores) should have large correla-
tions with each of the quantified variables. A solution is good to the extent that this
criterion is satisfied.

Two examples of categorical principal components analysis will be presented. The
first employs a rather small data set useful for illustrating the basic concepts and inter-
pretations associated with the procedure. The second example examines a practical
application.

107
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Example 1: Interrelations of Social Systems

This example examines Guttman’s (1968) adaptation of a table by Bell (1961). The data
are also discussed by Lingoes (1968).

Bell presented a table to illustrate possible social groups. Guttman used a portion of
this table, in which five variables describing such things as social interaction, feelings
of belonging to a group, physical proximity of members, and formality of the relation-
ship were crossed with seven theoretical social groups, including crowds (for example,
people at a football game), audiences (for example, people at a theater or classroom lec-
ture), public (for example, newspaper or television audiences), mobs (like a crowd but
with much more intense interaction), primary groups (intimate), secondary groups
(voluntary), and the modern community (loose confederation resulting from close
physical proximity and a need for specialized services).

Table 9.1 shows the variables in the data set resulting from the classification into
seven social groups used in the Guttman-Bell data, with their variable labels and the
value labels (categories) associated with the levels of each variable. This data set can be
found in guttman.sav. In addition to selecting variables to be included in the computa-
tion of the categorical principal components analysis, you can select variables that are
used to label objects in plots. In this example, the first five variables in the data are
included in the analysis, while cluster is used exclusively as a labeling variable. When
you specify a categorical principal components analysis, you must specify the optimal
scaling level for each analysis variable. In this example, an ordinal level is specified for
all analysis variables.

Table 9.1 Variables in the Guttman-Bell data set

Variable name Variable label Value labels

intnsity Intensity of interaction Slight, low, moderate, high

Jfrquency Frequency of interaction Slight, nonrecurring, infrequent, frequent
blonging Feeling of belonging None, slight, variable, high

proxmity Physical proximity Distant, close

Sformlity Formality of relationship No relationship, formal, informal

cluster Crowds, audiences, public, mobs, primary

groups, secondary groups, modern
community



Categorical Principal Components Analysis Examples 109

To produce categorical principal components output for this data set, from the menus
choose:
Analyze
Data Reduction
Optimal Scaling...

Optimal Scaling Level
®© Some variable(s) not multiple nominal

Number of Sets of Variables
® One set

P Analysis Variables: intnsity, frquency, blonging, proxmity, formlity
P Labeling Variables: cluster

Select intnsity, frquency, blonging, proxmity, formlity. Click Define Scale and
Weight.

Optimal Scaling Level
® Ordinal

Output...

Tables
M Object scores
O Correlations of transformed variables (deselect)

P Category Quantifications: intnsity, frquency, blonging, proxmity, formlity

Object Scores Options
P Label Object Scores By: cluster

Plots
Object...
Plots
Objects and variables (biplot)

Label Objects
Label by:

® Variable

» Selected: cluster

Plots
Category...
P Joint Category Plots: intnsity, frquency, blonging, proxmity, formlity
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Number of Dimensions

Figure 9.1 and Figure 9.2 show some of the initial output for the categorical principal
components analysis. After the iteration history of the algorithm, the model summary,
including the eigenvalues of each dimension, is displayed. These eigenvalues are
equivalent to those of classical principal components analysis. They are measures of
how much variance is accounted for by each dimension.

Figure 9.1 lIteration history
Variance Accounted For Loss
Restriction of
Centroid to
Iteration Centroid Vector
Number Total Increase Total Coordinates | Coordinates
31" 4.726009 .000008 | 5.273991 4.273795 1.000196
1. The iteration process stopped because the convergence test value was
reached.
Figure 9.2 Model summary
Variance Accounted For
Cronbach's Total
Dimension Alpha (Eigenvalue) | % of Variance
1 .881 3.389 67.774
2 .315 1.337 26.746
Total 986" 4726 94.520

1. Total Cronbach's Alpha is based on the total Eigenvalue.

The eigenvalues can be used as an indication of how many dimensions are needed. In
this example, the default number of dimensions, 2, was used. Is this the right number?
As a general rule, when all variables are either single nominal, ordinal, or numerical, the
eigenvalue for a dimension should be larger than 1. Since the two-dimensional solution
accounts for 94.5% of the variance, a third dimension probably would not add much
more information.

For multiple nominal variables, there is no easy rule of thumb to determine the appro-
priate number of dimensions. If the number of variables is replaced by the total number
of categories minus the number of variables, the above rule still holds. But this rule
alone would probably allow more dimensions than are needed. When choosing the num-
ber of dimensions, the most useful guideline is to keep the number small enough so that
meaningful interpretations are possible. The model summary table also shows Cron-
bach’s alpha (a measure of reliability), which is maximized by the procedure.
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Quantifications

For each variable, the quantifications, the vector coordinates, and the centroid coordi-
nates for each dimension are presented. The quantifications are the values assigned to
each category. The centroid coordinates are the average of the object scores of objects
in the same category. The vector coordinates are the coordinates of the categories when
they are required to be on a line, representing the variable in the object space. This is
required for variables with the ordinal and numerical scaling level.

Figure 9.3  Quantifications for intensity of interaction

Centroid Vector
Coordinates Coordinates
Dimension Dimension

Category Frequency | Quantification 1 2 1 2
SLIGHT 2 -1.530 | -1.496 .308 | -1.510 .208
Low 2 .362 .392 .202 .358 -.049
MODERATE 1 .379 .188 | -1.408 .374 -.051
HIGH 2 978 | 1.010 194 .965 -.133

Figure 9.4 shows the joint plot of the category points for the present example. Glancing
at the quantifications, you can see that some of the categories of some variables were not
clearly separated by the categorical principal components analysis as cleanly as would
have been expected if the level had been truly ordinal. (Use the point identification feature
to read obscured point labels. Choose Interpolation from the Format menu and click
Straight to display the markers for the categories.) Variables intnsity and frquency, for
example, have equal or almost equal quantifications for their two middle categories. This
kind of result might suggest trying alternative categorical principal components analyses,
perhaps with some categories collapsed, or perhaps with a different level of analysis, such
as (multiple) nominal. Figure 9.4 resembles the plot for the component loadings (Figure
9.7), but it also shows where the endpoints are located that correspond to the lowest quan-
tifications (for example, slight for intnsity and none for blonging).



112 Chapter 9

Figure 9.4  Joint plot category points
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To display markers, double-click on the graph and from the Chart Editor menus choose:

Format
Interpolation...

Interpolation Style
Straight

The two variables measuring interaction, intnsity and frquency, appear very close
together and account for much of the variance in dimension 1. Formlity also appears
close to proxmity.

By focusing on the category points, you can see the relationships even more clearly.
Not only are intnsity and frquency close, but the directions of their scales are similar; that
is, slight intensity is close to slight frequency, and frequent interaction is near high inten-
sity of interaction. You also see that close physical proximity seems to go hand-in-hand
with an informal type of relationship, and physical distance is related to no relationship.

Object Scores

You can also request a listing and plot of object scores. The plot of the object scores can
be useful for detecting outliers, detecting typical groups of objects, or revealing some
special patterns.

Figure 9.5 shows the listing of object scores labeled by social group for the Guttman-
Bell data. By examining the values for the object points, you can identify specific
objects in the plot.



Categorical Principal Components Analysis Examples 113

Figure 9.5 Object scores

Dimension
1 2
CROWDS -1.266 1.816
AUDIENCES .284 444
PUBLIC -1.726 -1.201
MOBS .931 229
PRIMARY GROUPS 1.089 159
SECONDARY GROUPS .188 -1.408
MODERN COMMUNITY| .500 -.039

The first dimension appears to separate CROWDS and PUBLIC, which have relatively
large negative scores, from MOBS and PRIMARY GROUPS, which have relatively large
positive scores. The second dimension has three clumps: PUBLIC and SECONDARY
GROUPS with large negative values, CROWDS with large positive values, and the other
social groups in between. This is easier to see by inspecting the plot of the object scores,
shown in Figure 9.6.

Figure 9.6  Object scores plot
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In the plot, you see PUBLIC and SECONDARY GROUPS at the bottom, CROWDS at
the top, and the other social groups in the middle. Examining patterns among individual
objects depends on the additional information available for the units of analysis. In this
case, you know the classification of the objects. In other cases, you can use supplemen-
tary variables to label the objects. You can also see that the categorical principal com-
ponents analysis does not separate MOBS from PRIMARY GROUPS. Although most
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Component

people usually don’t think of their families as mobs, on the variables used, these two
groups received the same score on four of the five variables! Obviously, you might want
to explore possible shortcomings of the variables and categories used. For example, high
intensity of interaction and informal relationships probably mean different things to
these two groups. Alternatively, you might consider a higher dimensional solution.

Loadings

Figure 9.7 shows the plot of component loadings. The vectors (lines) are relatively long,
indicating again that the first two dimensions account for most of the variance of all the
quantified variables. On the first dimension, all variables have high (positive) component
loadings. The second dimension is correlated mainly with quantified variables blonging
and proxmity, in opposite directions. This means that objects with a large negative score
in dimension 2 will have a high score in feeling of belonging and a low score in physical
proximity. The second dimension, therefore, reveals a contrast between these two vari-
ables while having little relation with the quantified variables frquency and intnsity.

Figure 9.7 Component loadings
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To examine the relation between the objects and the variables, look at the biplot of
objects and component loadings in Figure 9.8. The vector of a variable points into the
direction of the highest category of the variable. For example, for proxmity and blonging
the highest categories are close and high, respectively. Therefore, CROWDS are charac-
terized by close physical proximity and no feeling of belonging, and SECONDARY
GROUPS, by distant physical proximity and a high feeling of belonging.
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Figure 9.8  Biplot
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Additional Dimensions

Objects Labeled by
CLUSTER

O Component Loadings

Increasing the number of dimensions will increase the amount of variation accounted for
and may reveal differences concealed in lower dimensional solutions. As noted previ-
ously, in two dimensions MOBS and PRIMARY GROUPS cannot be separated. How-
ever, increasing the dimensionality may allow the two groups to be differentiated.

To obtain a three-dimensional solution, recall the Categorical Principal Components

dialog box:

Dimensions in solution: 3

Output...
[0 Object scores (deselect)

P Category Quantifications: (empty)
Plots
Object...

O Component loadings (deselect)
Plots
Category...

P Joint Category Plots: (empty)

A three-dimensional solution has eigenvalues of 3.424, 0.844, and 0.732.
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Figure 9.9  Model summary

Variance Accounted For
Cronbach's Total
Dimension Alpha (Eigenvalue) | % of Variance
1 .885 3.424 68.480
2 -.232 .844 16.871
3 -.459 732 14.649
Total 1.000" 5.000 99.999

1. Total Cronbach's Alpha is based on the total Eigenvalue.

The object scores for the three-dimensional solution were plotted in the scatterplot
matrix in Figure 9.10. In a scatterplot matrix, every dimension is plotted against every
other dimension in a series of two-dimensional scatterplots. Note that the first two
eigenvalues in three dimensions are not equal to the eigenvalues in the two-dimensional
solution; in other words, the solutions are not nested. Because the eigenvalues in dimen-
sions 2 and 3 are now smaller than 1 (giving a Cronbach’s alpha that is negative), you
should prefer the two-dimensional solution. The three-dimensional solution is included
for purposes of illustration.

Figure 9.10 Three-dimensional object scores scatterplot matrix
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The top row of plots reveals that the first dimension separates PRIMARY GROUPS and
MOBS from the other groups. Notice that the order of the objects along the vertical axis
does not change in any of the plots in the top row; each of these plots employs dimension
1 as the y axis.

The middle row of plots allows for interpretation of dimension 2. The second dimen-
sion has changed slightly from the two-dimensional solution. Previously, the second
dimension had three distinct clumps, but now the objects are more spread out along the
axis.

The third dimension helps to separate MOBS from PRIMARY GROUPS, which did
not occur in the two-dimensional solution.

Look more closely at the dimension 2 versus dimension 3 and dimension 1 versus
dimension 2 plots. On the plane defined by dimensions 2 and 3, the objects form a rough
rectangle, with CROWDS, MODERN COMMUNITY, SECONDARY GROUPS, and
PUBLIC at the vertices. On this plane, MOBS and PRIMARY GROUPS appear to be
convex combinations of PUBLIC-CROWDS and SECONDARY GROUPS-MODERN
COMMUNITY, respectively. However, as previously mentioned, they are separated
from the other groups along dimension 1. AUDIENCES is not separated from the other
groups along dimension 1 and appears to be a combination of CROWDS and MODERN
COMMUNITY. Figure 9.11 shows these relationships in a 3-D scatterplot.

Figure 9.11 Three-dimensional object scores space
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Knowing how the objects are separated does not reveal which variables correspond to
which dimensions. This is accomplished using the component loadings, which are pre-
sented in Figure 9.12. The first dimension corresponds primarily to blonging, intnsity,
and formlity; the second dimension separates frquency and proxmity; and the third
dimension separates these from the others.



118 Chapter 9

Figure 9.12 Three-dimensional component loadings

Dimension
1 2 3
INTENSITY .980 -.005 -.201
FREQUENCY 521 -.643 .561
BELONGING .980 -.002 -197
PROXIMITY 519 .656 .549
FORMALITY .981 .004 -.193

Example 2: Symptomatology of Eating Disorders

Eating disorders are debilitating illnesses associated with disturbances in eating behavior,
severe body image distortion, and an obsession with weight that affects the mind and body
simultaneously. Millions of people are affected each year, with adolescents particularly at
risk. Treatments are available and most are helpful when the condition is identified early.

A health professional can attempt to diagnose an eating disorder through a psychological
and medical evaluation. However, it can be difficult to assign a patient to one of several dif-
ferent classes of eating disorders because there is no standardized symptomatology of
anorectic/bulimic behavior. Are there symptoms that clearly differentiate patients into the
four groups? Which symptoms do they have in common?

In order to try to answer these questions, van der Ham, Meulman, van Strien, and van
Engeland (1997) made a study of 55 adolescents with known eating disorders, as shown
in Table 9.2.

Table 9.2 Patient diagnoses

Diagnosis Number of Patients
Anorexia nervosa 25

Anorexia with bulimia nervosa 9

Bulimia nervosa after anorexia 14

Atypical eating disorder 7

Total 55
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Each patient was seen four times over four years, for a total of 220 observations. At each
observation, the patients were scored for each of the 16 symptoms outlined in Table 9.3.
Symptom scores are missing for patient 71 at time 2, patient 76 at time 2, and patient 47
at time 3, leaving 217 valid observations. The data can be found in anorectic.sav.

Table 9.3  Modified Morgan-Russell subscales measuring well-being
Variable name Variable label Lower end (scorel) Upper end (score 3 or 4)
weight Body weight Outside normal range Normal
mens Menstruation Amenorrhea Regular periods
fast Restriction of food intake | Less than 1200 calories Normal/regular meals
(fasting)
binge Binge eating Greater than once a week | No bingeing
vomit Vomiting Greater than once a week | No vomiting
purge Purging Greater than once a week | No purging
hyper Hyperactivity Not able to be at rest No hyperactivity
Sfami Family relations Poor Good
eman Emancipation from family | Very dependent Adequate
frie Friends No good friends Two or more good friends
school School/employment Stopped school/work Moderate to good record
record
satt Sexual attitude Inadequate Adequate
sbeh Sexual behavior Inadequate Can enjoy sex
mood Mental state (mood) Very depressed Normal
preo Preoccupation with food | Complete No preoccupation
and weight
body Body perception Disturbed Normal

Principal components analysis is ideal for this situation, since the purpose of the study
is to ascertain the relationships between symptoms and the different classes of eating
disorders. Moreover, categorical principal components analysis is likely to be more
useful than classical principal components analysis because the symptoms are scored on

an ordinal scale.
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To produce categorical principal components output for this data set, from the menus
choose:
Analyze
Data Reduction
Optimal Scaling...

Optimal Scaling Level
®© Some variable(s) not multiple nominal

Number of Sets of Variables
® One set

P Analysis Variables: weight, mens, fast, binge, vomit, purge, hyper, fami, eman, frie,
school, satt, sbeh, mood, preo, body

P Supplementary Variables: fidi

P Labeling Variables: diag, time

Select weight, mens, fast, binge, vomit, purge, hyper, fami, eman, frie, school, satt,
sbeh, mood, preo, body. Click Define Scale and Weight.

Optimal Scaling Level
® Ordinal

Select tidi. Click Define Scale.

Optimal Scaling Level
®© Multiple nominal

Options...

Label Plots By
® Variable names or values

Output...

Tables
M Object scores
[0 Correlations of transformed variables (deselect)

P Category Quantifications: fidi

Object Scores Options
» Include Categories Of: diag, time, number

Plots
Object...
Label Objects
Label by:
© Variable
P Selected: diag, time
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Plots
Category...
P Category Plots: fidi

P Transformation Plots: weight, mens, fast, binge, vomit, purge, hyper, fami, eman,
frie, school, satt, sbeh, mood, preo, body

» Project Centroid Of: tidi

» Onto: binge, satt, preo

Save

Save to Working File
M Transformed variables

The procedure results in scores for the subjects (with mean O and unit variance) and
quantifications of the categories that maximize the mean squared correlation of the sub-
ject scores and the transformed variables. In the present analysis, the category quantifi-
cations were constrained to reflect the ordinal information.

Transformation Plots

The transformation plots display the original category number on the horizontal axes;
the vertical axes give the optimal quantifications.

Some variables, like frie and mens, obtained nearly linear transformations, so in this
analysis you may interpret them as numerical.

Figure 9.13 Transformation plots for friends and menstruation
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The quantifications for other variables like school and purge did not obtain linear trans-
formations and should be interpreted at the ordinal scaling level. The difference between

the second and third categories is much more important than that between the first and
second categories.
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Figure 9.14 Transformation plots for work/school record and purging
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An interesting case arises in the quantifications for binge. The transformation obtained
is linear for categories 1 through 3, but the quantified values for categories 3 and 4 are
equal. This result shows that scores of 3 and 4 do not differentiate between patients and

suggests that you could use the numerical scaling level in a two-component solution by
recoding 4’s as 3’s.

Figure 9.15 Transformation plot for binge eating

Quantifications for BINGE

Categories

Model Summary

To see how well your model fits the data, look at the model summary. About 47% of the
total variance is explained by the two-component model, 35% by the first dimension and
12% by the second. So, almost half of the variability on the individual objects level is
explained by the two-component model.



Categorical Principal Components Analysis Examples

Figure 9.16 Model summary

Variance Accounted For
Cronbach's Total
Dimension Alpha (Eigenvalue) | % of Variance
1 .874 5.550 34.690
2 522 1.957 12.234
Total 925" 7.508 46.924
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1. Total Cronbach's Alpha is based on the total Eigenvalue.

Component Loadings

To begin to interpret the two dimensions of your solution, look at the component loadings,
shown in Figure 9.17. All variables have a positive component loading in the first dimen-
sion, which means there is a common factor that correlates positively with all the variables.

Figure 9.17 Component loadings plot
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The second dimension separates the variables. The variables binge, vomit, and purge
form a bundle having large positive loadings in the second dimension. These symptoms
are typically considered to be representative of bulimic behavior.

The variables eman, school, satt, weight, and mens form another bundle, and you
can include fast and fami in this bundle, because their vectors are close to the main
cluster, and these variables are considered to be anorectic symptoms (fast, weight,
mens) or are psychosocial in nature (eman, school, satt, fami). The vectors of this
bundle are orthogonal (perpendicular) to the vectors of binge, vomit, and purge,
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which means that this set of variables is uncorrelated with the set of bulimic
variables.

The variables frie, mood, and hyper do not appear to fit very well into the solution.
You can see this in the plot by observing the lengths of each vector. The length of a
given variable’s vector corresponds to its fit, and frie, mood, and hyper have the shortest
vectors. Based on a two-component solution, you would probably drop these variables
from a proposed symptomatology for eating disorders. They may, however, fit better in
a higher dimensional solution.

The variables sbeh, preo, and body form another theoretic group of symptoms, per-
taining to how the patient experiences his or her body. While correlated with the two
orthogonal bundles of variables, these variables have fairly long vectors and are strongly
associated with the first dimension and therefore may provide some useful information
about the “common” factor.

Object Scores

Figure 9.18 shows a plot of the object scores, in which the subjects are labeled with their
diagnosis category.

Figure 9.18 Object scores plot labeled by diagnosis
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This plot does not help interpret the first dimension because patients are not separated
by diagnosis along it. However, there is some information about the second dimension.
Anorexia subjects (1) and patients with atypical eating disorder (4) form a group,
located above subjects with some form of bulimia (2 and 3). Thus, the second dimension
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separates bulimic patients from others, as you have also seen in the previous section (the
variables in the bulimic bundle have large positive component loadings in the second
dimension). This makes sense, given that the component loadings of the symptoms that
are traditionally associated with bulimia have large values in the second dimension.

Figure 9.19 shows a plot of the object scores, in which the subjects are labeled with
their time of diagnosis.

Figure 9.19 Object scores labeled by time
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Labeling the object scores by time reveals that the first dimension has a relation to time
because there seems to be a progression of times of diagnosis from the 1’s mostly to the
left and others to the right. Note that you can connect the time points in this plot by
saving the object scores and creating a scatterplot using the dimension 1 scores on the x
axis, the dimension 2 scores on the y axis, and setting the markers using the patient num-
bers (number).

Comparing the object scores plot labeled by time with the one labeled by diagnosis
can give you some insight into unusual objects. For example, in the plot labeled by time,
there is a patient whose diagnosis at time 4 lies to the left of all other points in the plot.
This is unusual because the general trend of the points is for the later times to lie further
to the right. Interestingly, this point that seems out of place in time also has an unusual
diagnosis, in that the patient is an anorectic whose scores place the patient in the bulimic
cluster. By looking in the table of object scores, you find that this is patient 43, diag-
nosed with anorexia nervosa, whose object scores are shown in Table 9.4.
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Table 9.4  Object scores for patient 43
Time Dimension 1 Dimension 2
1 -2.031 1.250
2 -2.067 0.131
3 -1.575 -1.467
4 -2.405 -1.807

The patient’s scores at time 1 are prototypical for anorectics, with the large negative score
in dimension 1 corresponding to poor body image, and the positive score in dimension 2
corresponding to no bulimic symptoms, and indication of anorectic symptoms or poor psy-
chosocial behavior. However, unlike the majority of patients, there is little or no progress
in dimension 1. In dimension 2, there is apparently some progress toward “normal”
(around 0, between anorectic and bulimic behavior), but then the patient shifts to exhibit
bulimic symptoms.

Examining the Structure of the Course of Iliness

To find out more about how the two dimensions were related to the four diagnosis
categories and the four time points, a supplementary variable tidi was created by a
cross-classification of the four categories of diag and the four categories of time.
Thus, tidi has 16 categories, where the first category indicates the anorexia nervosa
patients at their first visit. The fifth category indicates the anorexia nervosa patients
at time point 2, and so on, with the sixteenth category indicating the atypical eating
disorder patients at time point 4. The use of the supplementary variable tidi allows
for the study of the courses of illness for the different groups over time. The variable
was given a multiple nominal scaling level, and the category points are displayed in
Figure 9.20.

Figure 9.20 Category points for time/diagnosis interaction
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Some of the structure is apparent from this plot: the diagnosis categories at time point 1
clearly separate anorexia nervosa and atypical eating disorder from anorexia nervosa
with bulimia nervosa and bulimia nervosa after anorexia nervosa in the second dimen-
sion. After that, it’s a little more difficult to see the patterns.

However, you can make the patterns more easily visible by creating a scatterplot
based on the quantifications. To do this, from the menus choose:

Graphs
Scatter...

Select Simple and click Define.
DY Axis: trl17 2 1

DX Axis: tr17_1_1
PSet Markers By: diag

Then, to connect the points, double-click on the graph, and from the Chart Editor menus
choose:

Format
Interpolation...

Interpolation Style

Straight
Figure 9.21 Structures of the courses of illness
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By connecting the category points for each diagnostic category across time, the patterns
immediately suggest that the first dimension is related to time and the second, to diag-
nosis, as you previously determined from the object scores plots.

However, this plot further shows that, over time, the illnesses tend to become more alike.
Moreover, for all groups, the progress is greatest between time points 1 and 2; the anorectic
patients show some more progress from 2 to 3, but the other groups show little progress.
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Differential Development for Selected Variables

One variable from each bundle of symptoms identified by the component loadings was
selected as “representative” of the bundle. Binge eating was selected from the bulimic
bundle, sexual attitude, from the anorectic/psychosocial bundle, and body preoccupa-
tion, from the third bundle.

In order to examine the possible differential courses of illness, the projections of tidi
on binge, satt, and preo were computed and plotted in Figure 9.22.

Figure 9.22 Projected centroids of tidi on binge, satt, and preo
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This plot shows that at the first time point, the symptom binge eating separates bulimic
patients (2 and 3) from others (1 and 4); sexual attitude separates anorectic and atypical
patients (1 and 4) from others (2 and 3); and body preoccupation does not really separate
the patients. In many applications, this plot would be sufficient to describe the relation-
ship between the symptoms and diagnosis, but because of the complication of multiple
time points, the picture becomes muddled.

In order to view these projections over time, you need to:

Copy the contents of the projected centroids table to three new variables, and call them
binge2, satt2, and preo2.

Recall the Simple Scatterplot dialog box and click Reset to clear your previous
selections.

DY Axis: binge2
PX Axis: time2
PSet Markers By: diag?
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Figure 9.23 Projected centroids of time of diagnosis on binging over time
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With respect to binge eating, it is clear that the anorectic groups have different starting
values from the bulimic groups. This difference shrinks over time, as the anorectic
groups hardly change, while the bulimic groups show progress.

Recall the Simple Scatterplot dialog box and click Reset to clear your previous
selections.

DY Axis: satt2
PX Axis: time2

PSet Markers By: diag?

Figure 9.24 Projected centroids of time of diagnosis on sexual attitude over time
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With respect to sexual attitude, the four trajectories are more or less parallel over time,
and all groups show progress. The bulimic groups, however, have higher (better) scores
than the anorectic group.

Recall the Simple Scatterplot dialog box and click Reset to clear your previous
selections.

DY Axis: preo2
PX Axis: time2
PSet Markers By: diag?

Figure 9.25 Projected centroids of time of diagnosis on body preoccupation over time
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Body preoccupation is a variable that represents the core symptoms, which are shared by
the four different groups. Apart from the atypical eating disorder patients, the anorectic
group and the two bulimic groups have very similar levels both at the beginning and at
the end.



Nonlinear Canonical Correlation
Analysis Examples

The purpose of nonlinear canonical correlation analysis is to determine how similar two
or more sets of variables are to one another. As in linear canonical correlation analysis,
the aim is to account for as much of the variance in the relationships among the sets as
possible in a low-dimensional space. Unlike linear canonical analysis, however, non-
linear canonical correlation analysis does not assume an interval level of measurement
or that the relationships are linear. Another important difference is that nonlinear ca-
nonical correlation analysis establishes the similarity between the sets by simulta-
neously comparing linear combinations of the variables in each set to an unknown
set—the object scores.

Example: An Analysis of Survey Results

The example in this chapter is from a survey by Verdegaal (1985). The responses of 15
subjects to eight variables were recorded. The variables, variable labels, and value la-
bels (categories) in the data set are shown in Table 10.1.

Table 10.1 Survey data

Variable name | Variable label Value labels

age Age in years 20-25, 26-30, 31-35, 36-40, 41-45, 46-50,
51-55, 56-60, 61-65, 66-70

marital Marital status Single, Married, Other

pet Pets owned No, Cat(s), Dog(s), Other than cat or dog,
Various domestic animals

news Newspaper read most often | None, Telegraaf, Volkskrant, NRC, Other

music Music preferred Classical, New wave, Popular, Variety,
Don’t like music

live Neighborhood preference Town, Village, Countryside

math Math test score 0-5, 6-10, 11-15

language Language test score 0-5, 6-10, 11-15, 16-20

131
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This data set can be found in verd1985.sav. The variables of interest are the first six, and
they are divided into three sets. Set 1 includes age and marital, set 2 includes pet and
news, and set 3 includes music and live. Pet is scaled as multiple nominal and age is
scaled as ordinal; all of the other variables are scaled as single nominal. This analysis
requests a random initial configuration. By default, the initial configuration is numeri-
cal. However, when some of the variables are treated as single nominal with no possi-
bility of ordering, it is best to choose a random initial configuration. This is the case with
most of the variables in this study.

Examining the Data

To obtain a nonlinear canonical correlation analysis for this data set, from the menus
choose:
Analyze

Data Reduction
Optimal Scaling...

Optimal Scaling Level
©®© Some variable(s) not multiple nominal

Number of Sets of Variables
© Multiple sets

Set 1
D Variables: age, marital

Select age. Click Define Range and Scale.
Maximum: 10

Select marital. Click Define Range and Scale.

Maximum: 3
Optimal Scaling Level
©® Single nominal

Set2
D Variables: pet, news

Select pet. Click Define Range and Scale.
Maximum: 5
Optimal Scaling Level
®© Multiple nominal
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Select news. Click Define Range and Scale.
Maximum: 5
Optimal Scaling Level
© Single nominal

Set3
» Variables: music, live

Select music. Click Define Range and Scale.

Maximum: 5
Optimal Scaling Level
® Single nominal

Select live. Click Define Range and Scale.
Maximum: 3
Optimal Scaling Level
©® Single nominal

Options...
Display
O Centroids (deselect)
M Weights and component loadings
Plot

M Category centroids
M Transformations

M Use random initial configuration

After a list of the variables with their levels of optimal scaling, categorical canonical
correlation analysis with optimal scaling produces a table showing the frequencies of
objects in categories. This table is especially important if there are missing data, since
almost-empty categories are more likely to dominate the solution. In this example, there
are no missing data.

A second preliminary check is to examine the plot of object scores. You want to see
if there are any outliers that might tend to dominate the solution. Outliers have such dif-
ferent quantifications from the other objects that they will be at the boundaries of the
plot, thus dominating one or more dimensions.

If you find outliers, you can handle them in one of two ways. First, you can simply
eliminate them from the data and run the nonlinear canonical correlation analysis again.
Second, you can try recoding the extreme responses of the outlying object(s) by collaps-
ing (merging) some categories.

As shown in the plot of object scores in Figure 10.1, there were no outliers for the
survey data.
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Figure 10.1 Object scores
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Accounting for Similarity between Sets

The fit and loss values tell you how well the nonlinear canonical correlation analysis so-
lution fits the optimally quantified data with respect to the association between the sets.
Figure 10.2 shows the fit value, loss values, and eigenvalues for the survey example.

Figure 10.2 Summary of analysis

Dimension
1 2 Sum

Loss Set 1 .238 182 420

Set 2 182 414 .597

Set 3 A77 197 .375

Mean 199 .265 464
Eigenvalue .801 .735
Fit 1.536

Loss is partitioned across dimensions and sets. For each dimension and set, loss repre-
sents the proportion of variation in the object scores that cannot be accounted for by the
weighted combination of variables in the set. The average loss is labeled Mean. In this
example, the average loss over sets is 0.464. Notice that more loss occurs for the second
dimension than for the first.
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The eigenvalue for each dimension equals 1 minus the average loss for the dimension
and indicates how much of the relationship is shown by each dimension. The eigenval-
ues add up to the total fit. For Verdegaal’s data, 0.801/1.536 = 52% of the actual fit
is accounted for by the first dimension.

The maximum fit value equals the number of dimensions and, if obtained, indicates
that the relationship is perfect. The average loss value over sets and dimensions tells you
the difference between the maximum fit and the actual fit. Fit plus the average loss
equals the number of dimensions. Perfect similarity rarely happens and usually capital-
izes on trivial aspects in the data.

Another measure of association is the multiple correlation between linear combina-
tions from each set and the object scores. If no variables in a set are multiple nominal,
you can compute this by multiplying the weight and component loading of each variable
within the set, adding these products, and taking the square root of the sum.

Figure 10.3 gives the weights and Figure 10.4 gives the component loadings for the
variables in this example. The multiple correlation (R) for the first weighted sum of opti-
mally scaled variables (age and marital) with the first dimension of object scores is

R = J(0.701 x 0.841 + (=0.273 x -0.631))

J(0.5895 + 0.1723)
0.8728

For each dimension, 1 —1loss = R*. For example, from Figure 10.2, 1 — 0.238 = 0.762,
which is 0.872 squared (plus some rounding error). Consequently, small loss values indicate
large multiple correlations between weighted sums of optimally scaled variables and di-
mensions. Weights are not unique for multiple nominal variables. For multiple nominal
variables, use 1 —loss per set.

Figure 10.3 Weights

Dimension
Set 1 2
1 | Age in years .701 .758
Marital status -.273 1.014
2 I(;lf«te;/\:]spaper read most -.853 _350
3 | Music preferred .600 -774
Neighborhood preference -.514 -.763
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Figure 10.4 Component loadings

Dimension

Set 1 2
1 | Agein years .841 241
Marital status -.631 627
2 | Pets owned Dimension |1 .385 -429
2 -.274 .680
Newspaper read most often 677 379
3 | Music preferred .765 -.529
Neighborhood preference 707 515

Another popular statistic with two sets of variables is the canonical correlation. Since
the canonical correlation is related to the eigenvalue and thus provides no additional in-
formation, it is not included in the nonlinear canonical correlation analysis output. For
two sets of variables, the canonical correlation per dimension is obtained by the formula:

pe=2%XE;—-1

where d is the dimension number and E is the eigenvalue. You can generalize the canon-

ical correlation for more than two sets with the formula:

Pa = (KXE)-1)/(K-1)

where d is the dimension number, K is the number of sets, and E is the eigenvalue. For
our example,

p, = ((3x0.801)—1)/2 = 0.701

and

p, = ((3x0.735)-1)/2 = 0.603

The loss of each set is partitioned by the nonlinear canonical correlation analysis in sev-
eral ways. Figure 10.5 presents the multiple fit, single fit, and single loss tables produced
by the nonlinear canonical correlation analysis for the survey example. Note that multi-
ple fit minus single fit equals single loss.
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Figure 10.5 Partitioning fit and loss

Multiple Fit Single Fit Single Loss
Dimension Dimension Dimension

Set 1 2 Sum 1 2 Sum 1 2 Sum
1 | Age in years 521 | .628 |1.149 | 492 | .575(1.067 | .030 | .053 | .083

Marital status .076 | 1.028 | 1.103 | .075 |1.028 [1.102 | .001 | .000 [ .001
2 | Pets owned 390 | .443 | .833

zi"s"fgfatgﬁr read | 737 | 82| 918 | .727| 123 | .850 | .010 | .059 | .069
3 | Music preferred 387 | .614 [1.001 | .361 | .598 | .959 | .026 | .016 | .042

2‘2}9;22200" 265 | 583 | 848 | 264 | 583 | .847 | .000 | .000 | .000

Single loss indicates the loss resulting from restricting variables to one set of quantifi-
cations (that is, single nominal, ordinal, or nominal). If single loss is large, it is better to
treat the variables as multiple nominal. In this example, however, single fit and multiple
fit are almost equal, which means that the multiple coordinates are almost on a straight
line in the direction given by the weights.

Multiple fit equals the variance of the multiple category coordinates for each vari-
able. These measures are analogous to the discrimination measures found in
homogeneity analysis. You can examine the multiple fit table to see which variables dis-
criminate best. For example, look at the multiple fit table for marital and news. The fit
values, summed across the two dimensions, are 1.103 for marital and 0.918 for news.
This tells us that variable news discriminates less than marital.

Single fit corresponds to the squared weight for each variable and equals the variance
of the single category coordinates. As a result, the weights equal the standard deviations
of the single category coordinates. Examining how the single fit is broken down across
dimensions, we see that the variable news discriminates mainly on the first dimension
and that the variable marital discriminates almost totally on the second. In other words,
the categories of news are further apart in the first dimension than in the second, whereas
the pattern is reversed for marital. In contrast, age discriminates in both the first and sec-
ond dimensions; thus the spread of the categories is equal along both dimensions.
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Component Loadings

Figure 10.6 shows the plot of component loadings for the survey data. When there are
no missing data, the component loadings are equivalent to the Pearson correlations be-
tween the quantified variables and the object scores.

The distance from the origin to each variable point approximates the importance of
that variable. The canonical variables are not plotted but can be represented by horizon-
tal and vertical lines drawn through the origin.

Figure 10.6 Component loadings
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The relationships between variables are apparent. There are two directions that do not
coincide with the horizontal and vertical axes. One direction is determined by age
(labeled Age in years), news (labeled Newspaper re), and live (labeled Neighborhood).
The other direction is defined by the variables marital (labeled Marital stat), music
(labeled Music prefer), and pet (1abeled Pets owned). The pet variable is a multiple nom-

inal variable, so there are two points plotted for it. Each quantification is interpreted as
a single variable.

Transformation Plots

The different levels at which each variable can be scaled impose restrictions on the
quantifications. Transformation plots illustrate the relationship between the quantifica-
tions and the original categories resulting from the selected optimal scaling level.

The transformation plot for live (Figure 10.7), which was treated as nominal, displays
a U-shaped pattern, in which the middle category receives the lowest quantification and
the extreme categories receive values similar to each other. This pattern indicates a
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quadratic relationship between the original variable and the transformed variable. Using
an alternative optimal scaling level is not suggested for live.

Figure 10.7 Transformation plot for variable live (nominal)
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The quantifications for news, in contrast, correspond to an increasing trend across the
three categories that have observed cases (Figure 10.8). The first category receives the
lowest quantification, the second category receives a higher value, and the third category
receives the highest value. Although the variable is scaled as nominal, the category order
is retrieved in the quantifications.

Figure 10.8 Transformation plot for variable news (nominal)
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In contrast, the transformation plot for age displays an S-shaped curve (Figure 10.9).
The four youngest observed categories all receive the same negative quantification,
whereas the two oldest categories receive similar positive values. Consequently, col-
lapsing all of the younger ages into one common category (that is, below 50) and col-
lapsing the two oldest categories into one may be attempted. However, the exact equality
of the quantifications for the younger groups indicates that restricting the order of the
quantifications to the order of the original categories may not be desirable. Because the
quantifications for the 26-30, 36—40, and 4145 groups cannot be lower than the quan-
tification for the 20-25 group, these values are set equal to the boundary value. Allow-
ing these values to be smaller than the quantification for the youngest group (that is,
treating age as nominal) may improve the fit. So although age may be considered an or-
dinal variable, treating it as such does not appear appropriate in this case. Moreover,
treating age as numerical, and thus maintaining the distances between the categories,
would substantially reduce the fit.

Figure 10.9 Transformation plot for variable age (ordinal)
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Single versus Multiple Category Coordinates

For every variable treated as single nominal, ordinal, or numerical, quantifications, sin-
gle category coordinates, and multiple category coordinates are determined. These sta-
tistics for age are presented in Figure 10.10.
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Figure 10.10  Coordinates for variable Age

Single Category | Multiple Category
Coordinates Coordinates
Marginal Dimension Dimension
Frequency | Quantification 1 2 1 2

20-25 3 -.543 -.381 -412 -.189 -122
26-30 5 -.543 -.381 -412 -415 -.589
31-35 0 .000
36-40 1 -.543 -.381 -412 -.324 -.718
41-45 1 -.543 -.381 -412 -.359 -.533
46-50 0 .000
51-55 0 .000
56-60 2 -.273 -192 | -.207 -.464 .045
61-65 1 1.966 1.379 | 1.491 1.742 1.155
66-70 2 2.005 1406 | 1520 | 1.256 1.659
Missing 0

Every category for which no cases were recorded receives a quantification of 0. For age,
this includes the 31-35, 4650, and 51-55 categories. These categories are not restricted
to be ordered with the other categories and do not affect any computations.

For multiple nominal variables, each category receives a different quantification on
each dimension. For all other transformation types, a category has only one quantifica-
tion, regardless of the dimensionality of the solution. The single category coordinates
represent the locations of the categories on a line in the object space and equal the quan-
tifications multiplied by the weights. For example, in Figure 10.10, the single category
coordinates for category 8 (-0.192, —0.207) are the quantification multiplied by the
weights (see Figure 10.3).

The multiple category coordinates for variables treated as single nominal, ordinal, or
numerical represent the coordinates of the categories in the object space before ordinal
or linear constraints are applied. These values are unconstrained minimizers of the loss.
For multiple nominal variables, these coordinates represent the quantifications of the
categories.

The effects of imposing constraints on the relationship between the categories and
their quantifications are revealed by comparing the single with the multiple category
coordinates. On the first dimension, the multiple category coordinates for age decrease
to category 2 and remain relatively at the same level until category 9, at which point a
dramatic increase occurs. A similar pattern is evidenced for the second dimension.
These relationships are removed in the single category coordinates, in which the ordinal
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constraint is applied. On both dimensions, the coordinates are now nondecreasing. The
differing structure of the two sets of coordinates suggests that a nominal treatment may
be more appropriate.

Centroids and Projected Centroids

Figure 10.11 shows the plot of centroids labeled by variables. This plot should be inter-
preted in the same way as the category quantifications plot in homogeneity analysis or
the multiple category coordinates in nonlinear principal components analysis. By itself,
such a plot shows how well variables separate groups of objects (the centroids are in the
center of gravity of the objects).

Notice that the categories for age are not separated very clearly. The younger age cat-
egories are grouped together at the left of the plot. As suggested previously, ordinal may
be too strict a scaling level to impose on age.

Figure 10.11  Centroids labeled by variables
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When you request centroid plots, individual centroid and projected centroid plots for
each variable labeled by value labels are also produced. The projected centroids are on
a line in the object space. Figure 10.12, Figure 10.13, and Figure 10.14 are the plots of
centroids and projected centroids for age, news, and live, the variables of the first direc-
tion in the loadings plot.
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Figure 10.12  Centroids and projected centroids for variable Age
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Figure 10.13  Centroids and projected centroids for variable News
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Figure 10.14  Centroids and projected centroids for variable Live

1.5
1
1
! Village
1.0 : ﬁllage
1 *
]
.5 !
Town :
* !
008 ---- Fownt---------------
o~ A !
5 Country X Centroids
‘v .5 A 1
5 ! A Projected
E 1
5 -0 Country % Actual

40 -5 00 5 10 15 20

Dimension 1

The actual centroids are projected onto the vectors defined by the component loadings.
These vectors have been added to the centroid plots to aid in distinguishing the projected
from the actual centroids. The projected centroids fall into one of four quadrants formed
by extending two perpendicular reference lines through the origin. The interpretation of
the direction of single nominal, ordinal, or numerical variables is obtained from the po-
sition of the projected centroids. For example, the variable news is specified as single
nominal. The projected centroids show that Volkskrant and NRC are contrasted with
Telegraaf.

The problem with age is evident from the projected centroids. Treating age as ordinal
implies that the order of the age groups must be preserved. To satisfy this restriction, all
age groups below age 45 are projected into the same point. Along the direction defined
by age, news, and live, there is no separation of the younger age groups. Such a finding
suggests treating the variable as nominal.

To understand the relationships among variables, find out what the specific catego-
ries (values) are for clusters of categories in the centroid plots. The relationships among
age, news, and live can be described by looking at the upper right and lower left of the
plots. In the upper right, the age groups are the older respondents (61-65 and 66-70)
(Figure 10.12); they read the newspaper Telegraaf (Figure 10.13) and prefer living in a
Village (Figure 10.14). Looking at the lower-left corner of each plot, you see that the
younger to middle-aged respondents read the Volkskrant or NRC and want to live in the
Country or in a Town. However, separating the younger groups is very difficult.

The same types of interpretations can be made about the other direction (music, mar-
ital, and pet) by focusing on the upper left and the lower right of the centroid plots. In
the upper left corner, we find that single people tend to have dogs and like new wave
music. The married and other categories for marital have cats; the former group prefers
classical music and the latter group does not like music.
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An Alternative Analysis

The results of the analysis suggest that treating age as ordinal does not appear appropri-
ate. Although age is measured at an ordinal level, its relationships with other variables
are not monotonic. To investigate the effects of changing the optimal scaling level to sin-
gle nominal, you may rerun the analysis. Recall the Nonlinear Canonical Correlation
Analysis dialog box:

Set 1

Select age. Click Define Range and Scale.
Optimal Scaling Level
©® Single nominal
Options
Display
[0 Frequencies (deselect)
O Category quantifications (deselect)
[0 Weights and component loadings (deselect)
Plot

[0 Object scores
O Component loadings

The eigenvalues for a two-dimensional solution are 0.807 and 0.757 respectively, for a
total fit of 1.564.

Figure 10.15  Eigenvalues for the two-dimensional solution

Dimension
1 2 Sum

Loss Set 1 .246 116 .362

Set 2 .165 431 .596

Set 3 .168 .183 .352

Mean .193 .243 436
Eigenvalue .807 757
Fit 1.564
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The multiple-fit and single-fit tables are presented in Figure 10.16. Age is still a highly
discriminating variable, as evidenced by the sum of the multiple-fit values. In contrast
to the earlier results, however, examination of the single-fit values reveals the discrimi-
nation to be almost entirely along the second dimension.

Figure 10.16 Partitioning fit and loss

Multiple Fit Single Fit Single Loss
Dimension Dimension Dimension

Set 1 2 Sum 1 2 Sum 1 2 Sum
1 | Age in years 336 [ 1.037 |1.373 | 293 [1.025 [1.318 | .043 | .012 | .055

Marital status 185 | 1.158 |1.343 | .184 [1.158 [1.342 | .001 | .000 | .001
2 | Pets owned 493 | .403 | .896

ﬁi"s"fzggﬁ”ead 685 | 160 | .845 | 678 | .119 | .797 | .007 | .040 | .047
3 | Music preferred | .491 | .560 [1.051 | .490 | .558 |1.048 | .002 | .002 | .004

";'f;?e’;gzr;md 37| 782| 919 | 137 | 782 | .919 | .000 | .000 | .000

Figure 10.17 displays the transformation plot for age. The quantifications for a nominal
variable are unrestricted, so the nondecreasing trend displayed when age was treated or-
dinally is no longer present (see Figure 10.9). We find a decreasing trend until the age
of 40 and an increasing trend thereafter, corresponding to a U-shaped (quadratic) rela-
tionship. The two older categories still receive similar scores, and subsequent analyses
may involve combining these categories.

Figure 10.17  Transformation plot for variable Age (nominal)
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The transformation plot for /ive is given in Figure 10.18. Treating age as nominal does
not affect the quantifications for /ive to any significant degree. The middle category re-
ceives the smallest quantification, with the extremes receiving large positive values.

Figure 10.18  Transformation plot for variable Live (age nominal)
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A change is found in the transformation plot for news in Figure 10.19. Previously (Figure
10.8), an increasing trend was present in the quantifications, possibly suggesting an ordinal
treatment for this variable. However, treating age as nominal removes this trend from the
news quantifications.

Figure 10.19  Transformation plot for variable News (age nominal)
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Figure 10.20 displays the centroid plot for age. Notice that the categories do not fall in
chronological order along the line joining the projected centroids. The 20-25 group is
situated in the middle rather than at the end. The spread of the categories is much im-
proved over the ordinal counterpart presented previously.

Figure 10.20  Centroids and projected centroids for variable Age (nominal)
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Interpretation of the younger age groups is now possible from the centroid plot given in
Figure 10.21. The Volkskrant and the NRC categories are also further apart than in the
previous analysis, allowing for separate interpretations of each. The groups between the
ages of 26 and 45 read the Volkskrant and prefer Country living. The 20-25 and 56-60
age groups read the NRC; the former group prefers to live in a Town, and the latter group
prefers Country living. The oldest groups read the Telegraaf and prefer Village living.

Interpretation of the other direction (music, marital, and pet) is basically unchanged
from the previous analysis. The only obvious difference is that people with a marital sta-
tus of other have either cats or no pets.
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Figure 10.21  Centroids labeled by variables (age nominal)
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General Suggestions

149

Once you have examined the initial results, you will probably want to refine your
analysis by changing some of the specifications on the nonlinear canonical correlation
analysis. Here are some tips for structuring your analysis:

Create as many sets as possible. Put an important variable that you want to predict in
a separate set by itself.

Put variables that you consider predictors together in a single set. If there are many
predictors, try to partition them into several sets.

Put each multiple nominal variable in a separate set by itself.

If variables are highly correlated to each other and you don’t want this relationship
to dominate the solution, put those variables together in the same set.






Correspondence Analysis Examples

Correspondence analysis analyzes correspondence tables. A correspondence table is
any two-way table whose cells contain some measurement of correspondence between
the rows and the columns. The measure of correspondence can be any indication of the
similarity, affinity, confusion, association, or interaction between the row and column
variables. A very common type of correspondence table is a crosstabulation, where the
cells contain frequency counts.

Such tables can be obtained easily with the crosstabs procedure. However, a
crosstabulation does not always provide a clear picture of the nature of the relationship
between the two variables. This is particularly true if the variables of interest are nom-
inal (with no inherent order or rank) and contain numerous categories. Crosstabulation
may tell you that the observed cell frequencies differ significantly from the expected
values in a 10 x 9 crosstabulation of occupation and breakfast cereal, but it may be dif-
ficult to discern which occupational groups have similar tastes or what those tastes are.

Correspondence analysis allows you to examine the relationship between two nom-
inal variables graphically in a multidimensional space. It computes row and column
scores and produces plots based on the scores. Categories that are similar to each other
appear close to each other in the plots. In this way, it is easy to see which categories of
a variable are similar to each other or which categories of the two variables are related.
The correspondence analysis procedure also allows you to fit supplementary points
into the space defined by the active points.

If the ordering of the categories according to their scores is undesirable or counter-
intuitive, order restrictions can be imposed by constraining the scores for some
categories to be equal. For example, suppose you expect the variable smoking behavior
with categories none, light, medium and heavy to have scores which correspond to this
ordering. However, if the analysis orders the categories none, light, heavy and medium,
constraining the scores for heavy and medium to be equal preserves the ordering of the
categories in their scores.

The interpretation of correspondence analysis in terms of distances depends on the
normalization method used. The correspondence analysis procedure can be used to
analyze either the differences between categories of a variable or differences between
variables. With the default normalization, it analyzes the differences between the row
and column variables.

The correspondence analysis algorithm is capable of many kinds of analyses. Centering
the rows and columns and using chi-square distances corresponds to standard correspon-
dence analysis. However, using alternative centering options combined with Euclidean
distances allows for an alternative representation of a matrix in a low-dimensional space.

151
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Three examples will be presented. The first employs a relatively small correspon-
dence table and illustrates the concepts inherent in correspondence analysis. The second
example demonstrates a practical marketing application. The final example uses a table
of distances in a multidimensional scaling approach.

Example 1: Smoking Behavior by Job Category

The aim of correspondence analysis is to show the relationships between the rows and
columns of a correspondence table. You will use a hypothetical table introduced by
Greenacre (1984) to illustrate the basic concepts. This data set can be found in smok-
ing.sav. Figure 11.1 shows the distribution of smoking behavior for five levels of job
category. The rows of the correspondence table represent the job categories. The col-
umns of the correspondence table represent the smoking behavior.

Figure 11.1 Correspondence table

Smoking

No Active
Staff Group None | Light | Medium | Heavy Alcohol'| Alcohol! Margin
Sr Managers 4 2 3 2 0 11 11
Jr Managers 4 3 7 4 1 17 18
Sr Employees 25 10 12 4 5 46 51
Jr Employees 18 24 33 13 10 78 88
Secretaries 10 6 7 2 7 18 25
National Average?| 42| 29 20 9
Active Margin 61 45 62 25 193

1. Supplementary column
2. Supplementary row

In addition, the table contains one supplementary row and two supplementary columns.
The supplementary row identifies the percentage of people in each of the smoking catego-
ries nationwide. The two supplementary columns contain the number of people in each
staff category who do not drink alcohol and the number of people who do. Supplementary
rows and columns do not influence the analysis and are not part of the marginal sums.
The marginal row totals show that the company has far more employees, both junior
and senior, than managers and secretaries. However, the distribution of senior and junior
positions for the managers is approximately the same as the distribution of senior and
junior positions for the employees. Looking at the column totals, you see that there are
similar numbers of nonsmokers and medium smokers. Furthermore, heavy smokers are
outnumbered by each of the other three categories. But what, if anything, do any of these



Correspondence Analysis Examples 153

job categories have in common regarding smoking behavior? And what is the relation-
ship between job category and smoking?

Before you can answer these questions with correspondence analysis, the setup of the
data requires that the cases be weighted by the variable count. To do this, from the
menus choose:

Data
Weight Cases...

© Weight cases by
» Frequency Variable: count

Then, to obtain a correspondence analysis in three dimensions using row principal nor-
malization, from the menus choose:
Analyze

Data Reduction
Correspondence Analysis...

» Row: staff
» Column: smoke

Select staff. Click Define Range.
Category range for row variable: staff
Minimum value: 1
Maximum value: 5
Click Update.

Select smoke. Click Define Range.

Category range for row variable: smoke
Minimum value: 1

Maximum value: 4

Click Update.

Model...

Dimensions in solution: 3

Normalization Method

®© Row principal
Statistics...

M Row profiles

M Column profiles
Plots...

Scatterplots
M Row points
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Correspondence analysis generates a variety of plots that graphically illustrate the
underlying relationships between categories and between variables. Figure 11.2 shows
the scatterplot matrix of row scores for a three-dimensional solution.

Figure 11.2 Scatterplot matrix of row scores (row principal normalization)
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Scatterplot matrices can easily be converted to two- or three-dimensional scatterplots
using the chart gallery available through the Chart Editor. Figure 11.3 displays the two-
dimensional plot of the row scores for the first two dimensions. The remainder of this
chapter uses two-dimensional plots derived from scatterplot matrices.

Figure 11.3 Two-dimensional plot of row column (row principal normalization)
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An important choice in correspondence analysis is the normalization method. Although
solutions under different choices of normalization are completely equivalent in terms of
fit (the singular values), the plots, among other things, can be quite different. Figure 11.4
shows the correspondence analysis plot of row and column scores for the first two dimen-
sions. You use row principal normalization to focus on the differences or similarities be-
tween job categories. Row principal normalization results in the Euclidean distance
between a row point and the origin, approximating the chi-square distance between the
row category and the average row category. Moreover, the Euclidean distance between
any two points in the plot approximate the chi-square distance between the corresponding
rows of the correspondence table. The chi-square distance is a weighted Euclidean dis-
tance, where the weights equal the masses.

Figure 11.4 Plot of row and column scores (row principal normalization)
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The interpretation of the plot is fairly simple—row points that are close together are
more alike than row points that are far apart. In Figure 11.4, you see that secretaries and
senior employees are plotted near each other. This indicates that secretaries and senior
employees are similar in their smoking behavior. Junior managers are relatively far from
senior employees and are therefore very unlike them.

Although the distances between column points are artificially exaggerated by the row
principal normalization, you can still get a general idea about the relationship between
the row and column variables from this joint plot. If you draw a line from the origin to
each column point (smoke) and then make an orthogonal projection (perpendicular line)
from the row points (staff categories) to these lines, the distance from the intersection
of the two lines to the column point gives you an indication of how categories of the two
variables are related to each other. For example, vectors for none and heavy smoking
help describe the relationship between each of these categories and staff. You can see
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that senior employees are closest to none, followed by secretaries and senior managers.
Junior employees are farthest from none. In contrast, junior managers are closest to
heavy, followed by senior managers and junior employees. Similar interpretations are
possible for the other two smoking categories. This order is identical for all normaliza-
tion methods but principal normalization.

Profiles and Distances

To determine the distance between categories, correspondence analysis considers the
marginal distributions as well as the individual cell frequencies. It computes row and
column profiles, which give the row and column proportions for each cell, based on the
marginal totals. Figure 11.5 shows the row profiles for this example.

Figure 11.5 Row profiles (row principal normalization)

Smoking

Active
Staff Group None Light Medium | Heavy Margin
Senior Managers .364 182 273 182 1.000
Junior Managers 222 167 .389 222 1.000
Senior Employees 490 .196 .235 .078 1.000
Junior Employees .205 273 375 .148 1.000
Secretaries 400 .240 .280 .080 1.000
Mass .316 .233 .321 130

The row profiles indicate the proportion of the row category in each column category.
For example, among the senior employees, most are nonsmokers and very few are heavy
smokers. In contrast, among the junior managers, most are medium smokers and very
few are light smokers.

Figure 11.6 contains the column profiles. These values indicate the proportion of the
column in each row category. For example, most of the light smokers are junior employ-
ees. Similarly, most of the medium and heavy smokers are junior employees. Recall that
the sample contains predominantly junior employees. It is not surprising that this staff
category dominates the smoking categories.
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Figure 11.6 Column profiles

Smoking

Staff Group None Light | Medium | Heavy | Mass
Sr Managers .066 .044 .048 .080 .057
Jr Managers .066 .067 113 .160 .093
Sr Employees 410 222 194 .160 .264
Jr Employees .295 .533 .532 .520 456
Secretaries .164 133 113 .080 .130
Active Margin 1.000 | 1.000 1.000 | 1.000

If you think of difference in terms of distance, then the greater the difference between
row profiles, the greater the distance between points in a plot. The goal of correspon-
dence analysis with row principal normalization is to find a configuration in which
Euclidean distances between row points in the full dimensional space equal the chi-
square distances between rows of the correspondence table. In a reduced space, the
Euclidean distances approximate the chi-square distances.

Chi-square distances are weighted profile distances. These weighted distances are
based on the concept of mass. Mass is a measure that indicates the influence of an object
based on its marginal frequency. Mass affects the centroid, which is the weighted mean
row or column profile. The row centroid is the mean row profile. Points with a large
mass, like junior employees, pull the centroid strongly to their location. A point with a
small mass, like senior managers, pulls the row centroid only slightly to its location.

If the entries in the correspondence table are frequencies and row principal normaliza-
tion is used, then the weighted sum over all squared distances between the row profiles
and the mean row profile equals the chi-square statistic. Euclidean distances between
row points in the plot approximate chi-square distances between rows of the table.

The total inertia is defined as the weighted sum of all squared distances to the origin
divided by the total over all cells, where the weights are the masses. Rows with a small
mass influence the inertia only when they are far from the centroid. Rows with a large
mass influence the total inertia, even when they are located close to the centroid. The
same applies to columns.
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Row and Column Scores

The row and column scores are the coordinates of the row and column points in Figure
11.4. Figure 11.7 and Figure 11.8 show the row and column scores, respectively.

Figure 11.7 Row scores (row principal normalization)

Score in Dimension

Staff Group Mass 1 2 3 Inertia

Sr Managers .057 -.066 194 -.071 .003
Jr Managers .093 .259 243 .034 .012
Sr Employees .264 -.381 .01 .005 .038
Jr Employees .456 .233 -.058 -.003 .026
Secretaries 130 -.201 -.079 .008 .006
Active Total 1.000 .085

Figure 11.8 Column scores (row principal normalization)

Score in Dimension
Smoking Mass 1 2 3 Inertia
None .316 -1.438 .305 .044 .049
Light .233 .364 -1.409 -1.082 .007
Medium .321 718 -.074 1.262 .013
Heavy 1130 1.074 1.976 -1.289 .016
Active Total| 1.000 .085

For row principal normalization, geometrically, the column scores are proportional to
the weighted centroid of the active row points. The row points are in the weighted cen-
troid of the active column points, where the weights correspond to the entries in the row
profiles table. For example, the score of —0.066 for senior managers on the first dimen-
sion equals (see Figure 11.5 for the row profile):

(—1.438 x 0.364) + (0.364 x 0.182) + (0.718 X 0.273) + (1.074 x 0.182)

When the row points are the weighted average of the column points and the maximum
dimensionality is used, the Euclidean distance between a row point and the origin equals
the chi-square distance between the row and the average row. For example, the chi-
square distance between the row profile for secretaries and the row centroid is:

(0400 —0.316)2 (0.240—0.233)2  (0.280—0.321)2 _(0.080 — 0.130)2

0316 0233 0321 0130 = 0217
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The Euclidean distance from the secretaries point to the origin is:

J(=0.201)% + (-0.079)% + 0.0082= 0.216

Inertia of a row equals the weighted chi-squared distance to the average row. With row
principal normalization, inertia of a row point equals the weighted squared Euclidean
distance to the origin in the full dimensional space, where the weight is the mass. Figure
11.7 and Figure 11.8 display the inertias for all points. These inertias sum to the total
inertia across rows and columns. Because the chi-square statistic is equivalent to the
total inertia times the sum of all cells of the correspondence table, you can think of the
orientation of the row points as a pictorial representation of the chi-square statistic. For
other normalization methods, interpretations differ and are discussed later.

Dimensionality

Ideally, you want a correspondence analysis solution that represents the relationship be-
tween the row and column variables in as few dimensions as possible. But it is frequent-
ly useful to look at the maximum number of dimensions to see the relative contribution
of each dimension. The maximum number of dimensions for a correspondence analysis
solution equals the number of active rows minus 1 or the number of active columns mi-
nus 1, whichever is less. An active row or column is one for which a distinct set of scores
is found. Supplementary rows or columns are not active. If two row or column catego-
ries are constrained to be equal, one set of scores is determined for both. Consequently,
each equality constraint is equivalent to one active row or column. In the present exam-
ple, the maximum number of dimensions is min(5,4) -1, or 3.

The first dimension displays as much of the inertia as possible, the second is orthog-
onal to the first and displays as much of the remaining inertia as possible, and so on. It
is possible to split the total inertia into components attributable to each dimension. You
can then evaluate the inertia shown by a particular dimension by comparing it to the total
inertia. For example, Figure 11.9 shows that the first dimension displays 87.8%
(0.075/0.085) of the total inertia, whereas the second dimension displays only 11.8%
(0.010/0.085).

Figure 11.9 Inertia per dimension

Singular
Dimension Value Inertia Chi Square
1 273 .075
2 100 .010
3 .020 .000
Total .085 16.442
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If you decide that the first p dimensions of a ¢ dimensional solution show enough of the
total inertia, then you do not have to look at higher dimensions. In this example, you
might decide to omit the last dimension, knowing that it represents less than 1.0% of the
total inertia.

The singular values shown in Figure 11.9 can be interpreted as the correlation between
the row and column scores. They are analogous to the Pearson correlation coefficient (7)
in correlation analysis. For each dimension, the singular value squared (eigenvalue)
equals the inertia and thus is another measure of the importance of that dimension.

Supplementary Profiles

In correspondence analysis, additional categories can be represented in the space de-
scribing the relationships between the active categories. A supplementary profile de-
fines a profile across categories of either the row or column variable and does not
influence the analysis in any way. Figure 11.1 contains one supplementary row and two
supplementary columns.

The national average of people in each smoking category defines a supplementary
row profile. The two supplementary columns define two column profiles across the cat-
egories of staff. The supplementary profiles define a point in either the row space or the
column space. Because you will focus on both the rows and the columns separately, you
will use principal normalization.

To add the supplementary categories and obtain a principal normalization solution, re-
call the Correspondence Analysis dialog box:

Select staff. Click Define Range.

Category range for row variable: staff
Maximum value: 6
Click Update.

Category Constraints
Select 6.
©® Category is supplemental

Select smoke. Click Define Range.
Category range for column variable: smoke

Maximum value: 6
Click Update.

Category Constraints
Select 5.

©® Category is supplemental
Select 6.

© Category is supplemental
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Model...
Dimensions in solution: 2

Normalization Method
® Principal

Statistics...
O Correspondence table (deselect)
O Overview of row points (deselect)
[0 Overview of column points (deselect)
[0 Row profiles (deselect)
O Column profiles (deselect)

Plots...
Scatterplots
M Biplot (grayed out)
M Column points

Figure 11.10 shows the first two dimensions for the row points with the supplementary
point for national average. National average lies far from the origin, indicating that the
sample is not representative of the nation in terms of smoking behavior. Secretaries and
senior employees are close to the national average, whereas junior managers are not.
Thus, secretaries and senior employees have smoking behaviors similar to the national
average, but junior managers do not.

Figure 11.10  Row points (principal normalization)
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Figure 11.11 displays the column space with the two supplementary points for alcohol
consumption. Alcohol lies near the origin, indicating a close correspondence between
the alcohol profile and the average column profile (see Figure 11.6). However, no alco-
hol differs from the average column profile, illustrated by the large distance from the ori-
gin. The closest point to no alcohol is light smokers. The light profile is most similar to
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the nondrinkers. Among the smokers, medium is next closest and heavy is farthest. Thus,
there is a progression in similarity to nondrinking from light to heavy smoking. How-
ever, the relatively high proportion of secretaries in the no alcohol group prevents any
close correspondence to any of the smoking categories.

Figure 11.11  Column points (principal normalization)
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Contributions

As discussed in the section on “Dimensionality” above, it may be better to compute a
solution in two dimensions for this data. To compute a two-dimensional solution with
row principal normalization and supplementary categories, recall the Correspondence
Analysis dialog box:

Model...

Normalization Method
®© Row Principal

Statistics...

M Correspondence table

M Overview of row points

M Overview of column points

M Permutation of the correspondence table
Maximum dimension for permutations: 1

Confidence statistics for
M Row points
M Column points



Plots...
Scatterplots

[0 Biplot (deselect)
[0 Row points (deselect)
O Column points (deselect)
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It is possible to compute the inertia displayed by a particular dimension. The scores on
each dimension correspond to an orthogonal projection of the point onto that dimension.
Thus, the inertia for a dimension equals the weighted sum of the squared distances from
the scores on the dimension to the origin. However, whether this applies to row or col-
umn scores (or both) depends on the normalization method used. Each row and column
point contributes to the inertia. Row and column points that contribute substantially to
the inertia of a dimension are important to that dimension. The contribution of a point
to the inertia of a dimension is the weighted squared distance from the projected point
to the origin divided by the inertia for the dimension. Figure 11.12 and Figure 11.13
show these contributions for the row and column points respectively for a two-dimen-
sional representation.

Figure 11.12  Contributions of row points (row principal normalization)

Contribution
Of Point to Inertia of

Dimension
Staff Group 1 2
Sr Managers .003 214
Jr Managers .084 .551
Sr Employees 512 .003
Jr Employees 331 152
Secretaries .070 .081
National Average1 .000 .000
Active Total 1.000 1.000

1. Supplementary point
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Figure 11.13  Contributions of column points (row principal normalization)

Contribution
Of Point to Inertia of
Dimension
Smoking 1 2
None .654 .029
Light .031 463
Medium .166 .002
Heavy .150 .506
No Alcohol' .000 .000
Alcohol' .000 .000
Active Total 1.000 1.000

1. Supplementary point

The diagnostics that measure the contributions of points are an important aid in the inter-
pretation of a correspondence analysis solution. Dominant points in the solution can
easily be detected. For example, senior employees and junior employees are dominant
points in the first dimension, contributing 84% of the inertia. Among the column points,
none contributes 65% of the inertia for the first dimension alone.

The contribution of a point to the inertia of the dimensions depends on both the mass
and the distance from the origin. Points that are far from the origin and have a large mass
contribute most to the inertia of the dimension. Because supplementary points do not play
any part in defining the solution, they do not contribute to the inertia of the dimensions.

In addition to examining the contribution of the points to the inertia per dimension,
you can examine the contribution of the dimensions to the inertia per point. You can
examine how the inertia of a point is spread over the dimensions by computing the per-
centage of the point inertia contributed by each dimension. Figure 11.14 and Figure
11.15 display these contributions.

Figure 11.14  Contributions of dimensions to the row point inertias

Contribution

Of Dimension to Inertia of Point
Staff Group 1 2 Total
Sr Managers .092 .800 .893
Jr Managers .526 465 .991
Sr Employees .999 .001 1.000
Jr Employees .942 .058 1.000
Secretaries .865 133 .999
National Average' 631 131 761
Active Total

1. Supplementary point
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Figure 11.15  Contributions of dimensions to the column point inertias

Contribution

Of Dimension to Inertia of Point
Smoking 1 2 Total
None .994 .006 1.000
Light .327 .657 .984
Medium .982 .001 .983
Heavy .684 .310 .995
No Alcohol' .040 .398 439
Alcohol' .040 .398 439
Active Total

1. Supplementary point

Notice that the contributions of the dimensions to the point inertias do not all sum to one.
In a reduced space, the inertia that is contributed by the higher dimensions is not repre-
sented. Using the maximum dimensionality would reveal the unaccounted inertia
amounts.

In Figure 11.14, the first two dimensions contribute all of the inertia for senior employees
and junior employees, and virtually all of the inertia for junior managers and secretaries.
For senior managers, 11% of the inertia is not contributed by the first two dimensions. Two
dimensions contribute a very large proportion of the inertias of the row points.

Similar results occur for the column points in Figure 11.15. For every active column
point, two dimensions contribute at least 98% of the inertia. The third dimension con-
tributes very little to these points. The low totals for the supplementary column points
indicate that these points are not very well represented in the space defined by the active
points. Including these points in the analysis as active might result in quite a different
solution.

Permutations of the Correspondence Table

Sometimes it is useful to order the categories of the rows and the columns. For example,
you might have reason to believe that the categories of a variable correspond to a certain
order, but you don’t know the precise order. This ordination problem is found in various
disciplines—the seriation problem in archaeology, the ordination problem in phytosoci-
ology, and Guttman’s scalogram problem in the social sciences. Ordering can be
achieved by taking the row and column scores as ordering variables. If you have row
and column scores in p dimensions, p permuted tables can be made. When the first sin-
gular value is large, the first table will show a particular structure, with larger-than-ex-
pected relative frequencies close to the “diagonal.”
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Figure 11.16 shows the permutation of the correspondence table along the first
dimension for the example. Looking at the row scores for dimension 1 in Figure 11.7,
you can see that the ranking from lowest to highest is senior employees (—0.381),
national average (-0.258), secretaries (—0.201), senior managers (—0.066), junior
employees (0.233), and junior managers (0.259). Looking at the column scores for
dimension 1 in Figure 11.8, you see that the ranking is none, no alcohol, alcohol, light,
medium, and then heavy. These rankings are reflected in the ordering of the rows and
columns of the table.

Figure 11.16  Permutation of the correspondence table

Smoking

No Active
Staff Group None | Alcohol'| Alcohol’ Light | Medium | Heavy | Margin
Sr Employees 25 5 46 10 12 4 51
National Averagée® 42 29 20 9
Secretaries 10 7 18 6 7 2 25
Sr Managers 4 0 11 2 3 2 11
Jr Employees 18 10 78 24 33 13 88
Jr Managers 4 1 17 3 7 4 18
Active Margin 61 45 62 25 193

1. Supplementary column
2. Supplementary row

Confidence Statistics

Assuming that the table to be analyzed is a frequency table and that the data are a ran-
dom sample from an unknown population, the cell frequencies follow a multinomial dis-
tribution. From this, it is possible to compute the standard deviations and correlations of
the singular values, row scores, and column scores.

In a one-dimensional correspondence analysis solution, you can compute a confi-
dence interval for each score in the population. If the standard deviation is large,
correspondence analysis is very uncertain of the location of the point in the population.
On the other hand, if the standard deviation is small, then the correspondence analysis
is fairly certain that this point is located very close to the point given by the solution.
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In a multidimensional solution, if the correlation between dimensions is large, it may
not be possible to locate a point in the correct dimension with much certainty. In such
cases, multivariate confidence intervals must be calculated using the variance/covari-
ance matrix that can be written to a file.

The standard deviations for the singular values are 0.07 for the first dimension and
0.076 for the second dimension. These small values indicate that the correspondence
analysis would produce the same solution for a slightly different sample from the same
population. The fact that the first two singular values are very different is reflected in
the small correlation of 0.02 between the two dimensions.

Figure 11.17 and Figure 11.18 show the confidence statistics for the row and column
scores. The standard deviations for the rows are quite small, so you can conclude that
the correspondence analysis has obtained an overall stable solution. The standard devi-
ations for the column scores are much larger due to the row principal normalization. If
you look at the correlations between the dimensions for the scores, you see that the cor-
relations are small for the row scores and the column scores with one exception. The
column scores for none have a correlation of 0.617. However, the correlations for the
column scores can be inflated by using column principal normalization.

Figure 11.17  Confidence statistics for row scores

Standard Deviation in

Dimension Correlation
Staff Group 1 2 1-2
Sr Managers 321 .316 101
Jr Managers .248 225 .067
Sr Employees .102 .050 .046
Jr Employees .081 .056 .350
Secretaries .094 .070 -.184

Figure 11.18  Confidence statistics for column scores

Standard Deviation in
Dimension Correlation
Smoking 1 2 1-2
None .138 442 617
Light 534 .861 .054
Medium .328 1.044 .016
Heavy .682 1.061 -.250
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Normalization

Normalization is used to distribute the inertia over the row scores and column scores.
Some aspects of the correspondence analysis solution, such as the singular values, the
inertia per dimension, and the contributions, do not change under the various normaliza-
tions. The row and column scores and their variances are affected.

Correspondence analysis has several ways to spread the inertia. The three most com-
mon include spreading the inertia over the row scores only, spreading the inertia over
the column scores only, or spreading the inertia symmetrically over both the row scores
and the column scores. The normalization used in this example is called row principal
normalization. In row principal normalization, the Euclidean distances between the
row points approximate chi-square distances between the rows of the correspondence
table. The row scores are the weighted average of the column scores. The column scores
are standardized to have a weighted sum of squared distances to the centroid of 1. Since
this method maximizes the distances between row categories, you should use row prin-
cipal normalization if you are primarily interested in seeing how categories of the row
variable differ from each other.

On the other hand, you might want to approximate the chi-square distances between
the columns of the correspondence table. In that case, the column scores should be the
weighted average of the row scores. The row scores are standardized to have a weighted
sum of squared distances to the centroid of 1. This is called column principal normal-
ization. This method maximizes the distances between column categories and should be
used if you are primarily concerned with how categories of the column variable differ
from each other.

You can also treat the rows and columns symmetrically. This normalization spreads
inertia symmetrically over the rows and over the columns. The inertia is divided equally
over the row scores and the column scores. Note that neither the distances between the
row points nor the distances between the column points are approximations of chi-
square distances in this case. This is called symmetrical normalization. Use this
method if you are primarily interested in the differences or similarities between the two
variables. Usually, this is the preferred method to make biplots.

A fourth option is called principal normalization, in which the inertia is spread
twice in the solution, once over the row scores and once over the column scores. You
should use this method if you are interested in the distances between the row points and
the distances between the column points separately, but not in how the row and column
points are related to each other. Biplots, such as the one in Figure 11.4, are not appro-
priate for this normalization option and are therefore not available if you have specified
the principal normalization method.
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The normalization options allow you to rescale the desired graphical representation
in a flexible way. For example, to obtain a biplot for a two-dimensional solution with
symmetrical normalization, recall the Correspondence Analysis dialog box:

Model...

Normalization Method
® Symmetrical

Statistics...

[0 Correspondence table (deselect)

[0 Overview of row points (deselect)

O Overview of column points (deselect)

O Permutation of the correspondence table (deselect)

Confidence Statistics for
O Row points (deselect)
O Column points (deselect)

Plots...

Scatterplots
M Biplot

Figure 11.19 shows the biplot of row and column points using symmetrical normaliza-
tion. In this plot, junior managers are closest to heavy and senior employees are closest
to none. However, this plot does not indicate the relationship between categories of the
row variable or of the column variable.

Figure 11.19  Biplot with symmetrical normalization
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Row principal normalization results in the biplot in Figure 11.4. Notice that the column
points have moved toward the edges and the row points have clustered about the origin.
Row points are in the weighted centroid of the corresponding column points.

Figure 11.20 displays the biplot for column principal normalization. The column
points have moved toward the origin and the row points have moved away from it. Here,
column points are in the weighted centroid of the corresponding row points.

Figure 11.20  Biplot with column principal normalization
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The most flexible way to spread the inertia involves dividing the inertia unevenly over
the row and column scores. This option results in an expansion of one set of points and
a contraction of the other set of points. The points in the resulting biplot are oriented
somewhere between the corresponding points for row and column principal normaliza-
tion. This option is particularly useful for constructing a tailor-made biplot.



Correspondence Analysis Examples 171

Example 2: Perceptions of Coffee Brands

The previous example involved a small table of hypothetical data. Actual applications
often involve much larger tables. In this example, you will use data introduced by
Kennedy, Riquier, and Sharp (1996) pertaining to perceived images of six iced coffee
brands. This data set can be found in coffee.sav.

For each of twenty-three iced coffee image attributes, people selected all brands that were
described by the attribute. Table 11.1 contains the attributes and their corresponding labels.
The six brands are denoted AA, BB, CC, DD, EE, and FF to preserve confidentiality.

Table 11.1 Iced coffee attributes

Image Attribute Label Image Attribute Label
good hangover cure cure fattening brand fattening
low fat/calorie brand low fat appeals to men men
brand for children children South Australian brand South Australian
working class brand working traditional/old fashioned traditional
brand
rich/sweet brand sweet premium quality brand premium
unpopular brand unpopular | healthy brand healthy
brand for fat/ugly people |ugly high caffeine brand caffeine
very fresh fresh new brand new
brand for yuppies yuppies brand for attractive people | attractive
nutritious brand nutritious tough brand tough
brand for women women popular brand popular
minor brand minor

The setup of the data requires that the cases be weighted by the variable freq. To do this,
from the menus choose:

Data
Weight Cases...

© Weight cases by
P Frequency variable: freq
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Principal Normalization

Initially, you will focus on how the attributes are related to each other and how the
brands are related to each other. Using principal normalization spreads the total inertia
once over the rows and once over the columns. Although this prevents biplot interpre-
tation, the distances between the categories for each variable can be examined.

Dimensionality

In order to decide how many dimensions to use, you can find an initial solution in five
dimensions and choose a number of dimensions that accounts for the bulk of the inertia.
To obtain an initial solution in five dimensions with principal normalization, from the
menus choose:

Analyze

Data Reduction
Correspondence Analysis...

» Row: image
» Column: brand

Select image. Click Define Range.

Category range for row variable: image
Minimum value: 1

Maximum value: 23

Click Update.

Select brand. Click Define Range.

Category range for row variable: image
Minimum value: 1

Maximum value: 6

Click Update.

Model...
Dimensions in solution: 5

Normalization Method
® Principal

Figure 11.21 shows the decomposition of the total inertia along each dimension. Two
dimensions account for 83% of the total inertia. Adding a third dimension adds only 8.6%
to the accounted for inertia. Thus, you elect to use a two-dimensional representation.
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Figure 11.21 Inertia per dimension
Singular Proportion of Inertia
Dimension Value Inertia | Chi Square | Accounted for | Cumulative
1 71 .506 .629 .629
2 .399 159 .198 .827
3 .263 .069 .086 913
4 .234 .055 .068 .982
5 21 .015 .018 1.000
Total .804 3746.968 1.000 1.000
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To compute a two-dimensional solution, recall the Correspondence Analysis dialog box:

Model...

Dimensions in solution: 2

Plots...

Scatterplots
M Row points

M Column points

Contributions

Figure 11.22 shows the contributions of the row points to the inertia of the dimensions
and the contributions of the dimensions to the inertia of the row points. If all points con-
tributed equally to the inertia, the contributions would be 0.043. Healthy and low fat
both contribute a substantial portion to the inertia of the first dimension. Men and tough
contribute the largest amounts to the inertia of the second dimension. Both ugly and
fresh contribute very little to either dimension.
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Figure 11.22  Attribute contributions

Contribution
Of Point to Inertia of
Dimension Of Dimension to Inertia of Point

IMAGE 1 2 1 2 Total
fattening .042 .035 .652 173 .825
men .073 219 512 480 .992
South Australian .010 .044 114 152 .266
traditional .039 .071 454 .260 715
premium .016 .090 .296 .509 .805
healthy 152 .010 .953 .020 973
caffeine .019 .005 .702 .053 .755
new .086 .006 .893 .021 914
attractive .035 .001 911 .007 918
tough .056 .246 404 .560 .964
popular .058 .001 771 .003 774
cure .008 .011 446 .209 .655
low fat 175 .013 .941 .021 .962
children .006 .041 79 .380 .559
working .055 .064 .693 .255 .948
sweet .020 112 212 .368 .580
unpopular .011 .005 .585 .085 .670
ugly .000 .002 .000 131 131
fresh .001 .002 196 214 410
yuppies .010 .019 .392 .246 .637
nutritious .041 .001 .946 .006 .951
women .062 .001 .965 .007 972
minor .027 .001 593 .007 .600
Active Total 1.000 1.000

Two dimensions contribute a large amount to the inertia for most row points. The large
contributions of the first dimension to healthy, new, attractive, low fat, nutritious, and
women indicate that these points are very well represented in one dimension. Conse-
quently, the higher dimensions contribute little to the inertia of these points, which will
lie very near the horizontal axis. The second dimension contributes most to men, pre-
mium, and tough. Both dimensions contribute very little to the inertia for South Austra-
lian and ugly, so these points are poorly represented.
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Figure 11.23 displays the contributions involving the column points. Brands CC and
DD contribute the most to the first dimension, whereas EE and FF explain a large
amount of the inertia for the second dimension. AA and BB contribute very little to either
dimension.

Figure 11.23  Brand contributions

Contribution
Of Point to Inertia of

Dimension Of Dimension to Inertia of Point
BRAND 1 2 1 2 Total
AA 187 .003 744 .004 748
BB .021 134 135 272 407
cC .362 .007 .951 .006 .957
DD .267 .010 .928 .011 .939
EE 127 477 420 494 914
FF .036 .369 169 .550 718
Active Total 1.000 1.000

In two dimensions, all brands but BB are well represented. CC and DD are represented
well in one dimension. The second dimension contributes the largest amounts for EE
and FF. Notice that AA is represented well in the first dimension, but does not have a
very high contribution to that dimension.

Figure 11.24 displays the plot of the row points. Fresh and ugly are both very close to
the origin, indicating that they differ little from the average row profile. Three general
classifications emerge. Located in the upper left of the plot, tough, men, and working are
all similar to each other. The lower left contains sweet, fattening, children, and premium.
In contrast, healthy, low fat, nutritious, and new cluster on the right side of the plot.
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Figure 11.24  Plot of image attributes (principal normalization)
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Figure 11.25 shows the plot of the brands. Notice that all brands are far from the origin,
so no brand is similar to the overall centroid. Brands CC and DD group together at the
right, whereas brands BB and FF cluster in the lower half of the plot. Brands AA and EE
are not similar to any other brand.

Figure 11.25 Plot of brands (principal normalization)
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Symmetrical Normalization

How are the brands related to the image attributes? Principal normalization cannot ad-
dress these relationships. To focus on how the variables are related to each other, use
symmetrical normalization. Rather than spread the inertia twice (as in principal normal-
ization), symmetrical normalization divides the inertia equally over both the rows and
columns. Distances between categories for a single variable cannot be interpreted, but
distances between the categories for different variables are meaningful.

To produce the following solution with symmetrical normalization, recall the Corre-
spondence Analysis dialog box:

Model...

Normalization Method
© Symmetrical

Statistics...
O Correspondence table (deselect)
[0 Overview of row points (deselect)
[0 Overview of column points (deselect)

Plots...
Scatterplots
O Row points (deselect)
[0 Column points (deselect)

Figure 11.26 displays the biplot of the row and column scores. In the upper left, brand
EFE is the only tough, working brand and appeals to men. Brand AA is the most popular
and also viewed as the most highly caffeinated. The sweet, fattening brands include BB
and FF. Brands CC and DD, while perceived as new and healthy, are also the most
unpopular.

For further interpretation, you can draw a line through the origin and the two image
attributes men and yuppies, and project the brands onto this line. The two attributes are
opposed to each other, indicating that the association pattern of brands for men is
reversed compared to the pattern for yuppies. That is, men are most frequently associ-
ated with brand EE and least frequently with brand CC, whereas yuppies are most
frequently associated with brand CC and least frequently with brand EE.
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Biplot of the brands and the attributes (symmetrical normalization)
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Example 3: Flying Mileage between Cities

Correspondence analysis is not restricted to frequency tables. The entries can be any
positive measure of correspondence. In this example, you use the flying mileages be-
tween ten American cities. The cities are shown in Table 11.2.

Table 11.2 City labels

City
Atlanta
Chicago
Denver

Houston

Label
Atl
Chi
Den
Hou

Los Angeles LA

City

Miami

New York

San Francisco
Seattle
Washington, DC

Label
Mia
NY
SF
Sea
DC

To view the flying mileages, first weight the cases by the variable dist. From the menus

choose:
Data

Weight cases...

© Weight cases by
P Frequency Variable: dist
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Now, to view the mileages as a crosstabulation, from the menus choose:

Analyze
Descriptive Statistics
Crosstabs...

P Row(s): row
» Column(s): col

Figure 11.27 contains the flying mileages between the cities. Notice that there is only
one variable for both rows and columns and that the table is symmetric; the distance
from Los Angeles to Miami is the same as the distance from Miami to Los Angeles.
Moreover, the distance between any city and itself is 0. The active margin reflects the
total flying mileage from each city to all other cities.

Figure 11.27  Flying mileages between 10 American cities

Count
CcoL
Atl Chi Den Hou LA Mia NY SF Sea DC Total
ROW | Atl 587 | 1212 701 1936 604 748 | 2139 | 2182 543 | 10652
Chi 587 920 940 [ 1745 | 1188 713 | 1858 | 1737 597 | 10285
Den 1212 920 879 831 1726 | 1631 949 [ 1021 1494 | 10663
Hou 701 940 879 1374 968 | 1420 | 1645 | 1891 1220 | 11038
LA 1936 | 1745 831 1374 2339 | 2451 347 959 [ 2300 | 14282
Mia 604 | 1188 | 1726 968 | 2339 1092 | 2594 | 2734 923 | 14168
NY 748 713 | 1631 1420 | 2451 1092 2571 | 2408 205 | 13239
SF 2139 | 1858 949 [ 1645 347 | 2594 | 2571 678 | 2442 | 15223
Sea 2182 | 1737 | 1021 1891 959 [ 2734 | 2408 678 2329 | 15939
DC 543 597 | 1494 | 1220 | 2300 923 205 | 2442 | 2329 12053
Total 10652 | 10285 | 10663 | 11038 | 14282 | 14168 | 13239 | 15223 | 15939 | 12053 | 127542

In general, distances are dissimilarities; large values indicate a large difference between
the categories. However, correspondence analysis requires an association measure; thus,
you need to convert dissimilarities into similarities. In other words, a large table entry
must correspond to a small difference between the categories. Subtracting every table
entry from the largest table entry converts the dissimilarities into similarities.
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To create the similarities and store them in a new variable sim, from the menus choose:

Transform
Compute...

P Target Variable: sim
» Numeric Expression: 2734 - dist

Now re-weight the cases by the similarity measure by recalling the Weight Cases dialog
box:

P Frequency Variable: sim

Finally, to obtain a correspondence analysis for the similarities, from the menus choose:

Analyze
Data Reduction
Correspondence Analysis...

» Row: row
» Column: col

Select row. Click Define Range.
Category range for row variable: row
Minimum value: 1
Maximum value: 10
Click Update.

Select row. Click Define Range.

Category range for row variable: row
Minimum value: 1

Maximum value: 10

Click Update.

Model...
Normalization Method
® Principal
Plots...
Scatterplots
M Row points

The new distance of 0 between Seattle and Miami indicates that they are most distant
(least similar), whereas the distance of 2529 between New York and Washington, D.C.,
indicates that they are the least distant (most similar) pair of cities.



Figure 11.28  Correspondence table for similarities

Correspondence Analysis Examples

CcoL

Active
ROW Atl Chi Den Hou LA Mia NY SF Sea DC Margin
Atl 2734 | 2147 1522 | 2033 798 | 2130 1986 595 552 [ 2191 | 16688
Chi 2147 | 2734 1814 1794 989 | 1546 | 2021 876 997 | 2137 | 17055
Den 1522 1814 | 2734 1855 1903 [ 1008 1103 1785 1713 | 1240 | 16677
Hou 2033 1794 1855 | 2734 1360 | 1766 1314 1089 843 | 1514 | 16302
LA 798 989 1903 1360 | 2734 395 283 | 2387 1775 434 | 13058
Mia 2130 1546 1008 1766 395 | 2734 1642 140 0| 1811 | 13172
NY 1986 | 2021 1103 1314 283 | 1642 | 2734 163 326 | 2529 | 14101
SF 595 876 1785 1089 | 2387 140 163 | 2734 | 2056 292 | 12117
Sea 552 997 1713 843 1775 0 326 | 2056 | 2734 405 | 11401
DC 2191 2137 1240 1514 434 | 1811 2529 292 405 | 2734 | 15287
,\Aﬂztir;?n 16688 | 17055 | 16677 | 16302 | 13058 | 13172 | 14101 | 12117 | 11401 | 15287 | 145858

Row and Column Scores

181

By using flying mileages instead of driving mileages, the terrain of the United States
does not impact the distances. Consequently, all similarities should be representable in
two dimensions. You center both the rows and columns and use principal normalization.
Because of the symmetry of the correspondence table and the principal normalization,
the row and column scores are equal and the total inertia is in both, so it does not matter
whether you inspect the row or column scores. Figure 11.29 shows the orientation of the
scores in two dimensions.

Figure 11.29  Points for 10 cities
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The locations of the cities are very similar to their actual geographical locations, rotated
about the origin. Cities which are further south have larger values along the second dimen-
sion, whereas cities which are further west have larger values along the first dimension.



Homogeneity Analysis Examples

The purpose of homogeneity analysis is to find quantifications that are optimal in the
sense that the categories are separated from each other as much as possible. This
implies that objects in the same category are plotted close to each other and objects in
different categories are plotted as far apart as possible. The term homogeneity also
refers to the fact that the analysis will be most successful when the variables are homo-
geneous; that is, when they partition the objects into clusters with the same or similar
categories.

183
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Example: Characteristics of Hardware

To explore how homogeneity analysis works, you will use data from Hartigan (1975),
which can be found in screws.sav. This data set contains information on the character-
istics of screws, bolts, nuts, and tacks. Table 12.1 shows the variables, along with their
variable labels, and the value labels assigned to the categories of each variable in the
Hartigan hardware data set.

Table 12.1 Hartigan hardware data set

Variable name Variable label Value labels

thread Thread Yes_Thread, No_Thread

head Head form Flat, Cup, Cone, Round, Cylinder

indhead Indentation of head None, Star, Slit

bottom Bottom shape sharp, flat

length Length in half inches | 1/2_in, 1_in, 1_1/2_1in, 2_in, 2_1/2_in

brass Brass Yes_Br, Not_Br

object Object tack, naill, nail2, nail3, nail4, nail5, nail6, nail7,
nail8, screwl, screw2, screw3, screw4, screw?,
boltl, bolt2, bolt3, bolt4, bolt5, bolt6, tackl,
tack2, nailb, screwb

This example includes all of the variables in the homogeneity analysis with the excep-
tion of object, which is used only to label a plot of the object scores.

In order to label the object scores plots with variables used in obtaining the solution, you
must create copies of the analysis variables. To do this:

» In the Data Editor, Ctrl-click on the column headings to select the contents of the vari-
ables thread, head, indhead, brass, and length.

» To copy the contents of these columns, from the menus choose:
Edit
Copy

» To paste the contents into new variables, select five empty columns and from the menus
choose:

Edit
Paste

» Rename the new variables thrd_lab, head_lab, ind_lab, brss_lab, and len_lab.
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Now, to obtain a homogeneity analysis, from the menus choose:

Analyze
Data Reduction
Optimal Scaling...

Optimal Scaling Level
®© All variables multiple nominal (default)

Number of Sets of Variables
© One set (default)

Variables: thread, head, indhead, bottom, brass, length
Label Object Scores Plot(s) by: object, thrd_lab, head_lab, brss_lab, len_lab

Select thread, bottom, brass. Click Define Range.
Maximum: 2

Select head, length. Click Define Range.
Maximum: 5

Select indhead. Click Define Range.
Maximum: 3

Select object. Click Define Range.
Maximum: 24

Select thrd_lab, brss_lab. Click Define Range.
Maximum: 2

Select head_lab, len_lab. Click Define Range.
Maximum: 5

Options...

Plot
M Discrimination measures

Multiple Dimensions

Homogeneity analysis can compute a solution for several dimensions. The maximum
number of dimensions equals either the number of categories minus the number of vari-
ables with no missing data, or the number of observations minus one, whichever is
smaller. However, you should rarely use the maximum number of dimensions. A smaller
number of dimensions is easier to interpret, and, after a certain number of dimensions,
the amount of additional association accounted for becomes negligible. A one-, two-, or
three-dimensional solution in homogeneity analysis is very common.

The eigenvalues measure how much of the categorical information is accounted for
by each dimension and are similar to the total variance accounted for. However, because
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the quantifications differ for each dimension, the total variance accounted for is defined
on a different set of quantified variables for each dimension. For this example, a two-
dimensional solution produces eigenvalues of 0.62 and 0.37 for dimensions 1 and 2,
respectively. The largest possible eigenvalue for each dimension is 1.

Figure 12.1 Eigenvalues

Dimension | Eigenvalue
1 .621
2 .368

The two dimensions together provide an interpretation in terms of distances. If a vari-
able discriminates well, the objects will be close to the categories to which they belong.
Ideally, objects in the same category will be close to each other (that is, they should have
similar scores), and categories of different variables will be close if they belong to the
same objects (that is, two objects that have similar scores for one variable should also
score close to each other for the other variables in the solution).

Object Scores

After examining the frequency table and eigenvalues, you should look at the object
scores. The default object scores plot, shown in Figure 12.2, is useful for spotting outli-
ers. In Figure 12.2, there is one object at the bottom of the plot that might be considered
an outlier. Later, we’ll consider what happens if you drop this object.

Figure 12.2 Object scores plot
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The plot shown in Figure 12.2 groups the object scores and displays them as sunflowers.
Each petal on the sunflower represents a number of cases. This provides an easy way to
see at a glance if many cases fall close together. Sunflowers with many petals indicate
that a large number of cases fall in that area, while sunflowers with fewer petals indicate
that a smaller number of cases fall in that area.

The distance from an object to the origin reflects variation from the “average”
response pattern. This average response pattern corresponds to the most frequent cate-
gory for each variable. Objects with many characteristics corresponding to the most
frequent categories lie near the origin. In contrast, objects with unique characteristics are
located far from the origin.

With a large data set, a sunflower plot is probably sufficient for most purposes. With
smaller data sets such as the one in this example, however, it would be nice to see
exactly where each case (object) falls on the plot. It is difficult to see specific relation-
ships among individual objects unless you can tell which object is number 1, which
object is number 2, and so on. You can specify one or more variables to label the object
scores plot. Each labeling variable produces a separate plot labeled with the values of
that variable.

We’ll take a look at the plot of object scores labeled by the variable object. This is
just a case-identification variable and was not used in any computations. Figure 12.3
shows the plot of object scores labeled with object.

Figure 12.3 Object scores labeled by variable object
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Examining the plot, you see that the first dimension (the horizontal axis) discriminates the
screws and bolts (which have threads) from the nails and tacks (which don’t have threads).
This is easily seen on the plot since screws and bolts are on one end of the horizontal axis
and tacks and nails are on the other. To a lesser extent, the first dimension also separates
the bolts (which have flat bottoms) from all the others (which have sharp bottoms).
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The second dimension (the vertical axis) seems to separate SCREW1I and NAIL6 from
all other objects. What SCREW1 and NAIL6 have in common are their values on variable
length—they are the longest objects in the data. Moreover, SCREW1I lies much farther
from the origin than the other objects, suggesting that, taken as a whole, many of the
characteristics of this object are not shared by the other objects.

Discrimination Measures

Before examining the rest of the object scores plots, let’s see if the discrimination
measures agree with what we’ve said so far. For each variable, a discrimination mea-
sure, which can be regarded as a squared component loading, is computed for each
dimension. This measure is also the variance of the quantified variable in that dimen-
sion. It has a maximum value of 1, which is achieved if the object scores fall into
mutually exclusive groups and all object scores within a category are identical. (Note:
This measure may have a value greater than 1 if there are missing data.) Large dis-
crimination measures correspond to a large spread among the categories of the vari-
able and, consequently, indicate a high degree of discrimination between the
categories of a variable along that dimension.

The average of the discrimination measures for any dimension equals the eigenvalue
(the total variance accounted for) for that dimension. Consequently, the dimensions are
ordered according to average discrimination. The first dimension has the largest average
discrimination, the second dimension has the second largest average discrimination, and
so on for all dimensions in the solution.

As noted on the object scores plot, Figure 12.4 shows that the first dimension is
related to variables thread and bottom (labeled Bottom shape). These variables have
large discrimination measures on the first dimension and small discrimination measures
on the second dimension. Thus, for both of these variables, the categories are spread far
apart along the first dimension only. Variable length (labeled Length in ha) has a large
value on the second dimension, but a small value on the first dimension. As a result,
length is closest to the second dimension, agreeing with the observation from the object
scores plot that the second dimension seems to separate the longest objects from the rest.
indhead (labeled Indentation) and head (labeled Head form) have relatively large values
on both dimensions, indicating discrimination in both the first and second dimensions.
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Figure 12.4 Plot of discrimination measures
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Variable brass, located very close to the origin, does not discriminate at all in the first
two dimensions. This makes sense since all of the objects can be made of brass or not
made of brass. Moreover, variable length only discriminates in the second dimension for
the same reason.

Category Quantifications

Recall that a discrimination measure is the variance of the quantified variable along a
particular dimension. The discrimination measures plot contains these variances, indi-
cating which variables discriminate along which dimension. However, the same vari-
ance could correspond to all of the categories being spread moderately far apart or to
most of the categories being close together, with a few categories differing from this
group. The discrimination plot cannot differentiate between these two conditions.
Category quantification plots provide an alternative method of displaying discrimina-
tion of variables that can identify category relationships. In this plot, the coordinates of
each category on each dimension are displayed. Thus, you can determine which catego-
ries are similar for each variable. The category quantifications are plotted in Figure 12.5.
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Figure 12.5 Category quantifications
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Variable length has five categories, three of which group together near the top of the
plot. The remaining two categories are in the lower half of the plot, with the 2_1/2_in
category very far from the group. The large discrimination for length along dimension
2 is aresult of this one category being very different from the other categories of length.
Similarly, for head, the category STAR is very far from the other categories and yields a
large discrimination measure along the second dimension. These patterns cannot be il-
lustrated in a plot of discrimination measures.

The spread of the category quantifications for a variable reflects the variance and thus
indicates how well that variable is discriminated in each dimension. This is illustrated
in Figure 12.6, in which some of the category labels have been omitted. Focusing on
dimension 1, the categories for thread are far apart. However, along dimension 2, the
categories for this variable are very close. Thus, thread discriminates better in dimen-
sion 1 than in dimension 2. In contrast, the categories for head are spread far apart along
both dimensions, suggesting that this variable discriminates well in both dimensions.
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Figure 12.6 Selected category quantifications
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In addition to determining the dimensions along which a variable discriminates and how
that variable discriminates, the category quantification plot also compares variable dis-
crimination. A variable with categories that are far apart discriminates better than a vari-
able with categories that are close together. In Figure 12.5, for example, along
dimension 1, the two categories of brass are much closer to each other than the two cat-
egories of thread, indicating that thread discriminates better than brass along this di-
mension. However, along dimension 2, the distances are very similar, suggesting that
these variables discriminate to the same degree along this dimension. The discrimina-
tion measures plot discussed previously identifies these same relationships by using
variances to reflect the spread of the categories.

A More Detailed Look at Object Scores

A greater insight into the data can be gained by examining the object scores plots labeled
by each variable. Ideally, similar objects should form exclusive groups, and these groups
should be far from each other. Figure 12.7, Figure 12.8, Figure 12.9, and Figure 12.10
present object scores labeled by thrd_lab, head_lab, len_lab, and brss_lab. Figure 12.7
shows that the first dimension separates Yes_Thread and No_Thread perfectly. All of the
objects with threads have negative object scores, whereas all of the nonthreaded objects
have positive scores. Although the two categories do not form compact groups, the per-
fect differentiation between the categories is generally considered a good result.
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Figure 12.7 Object scores labeled with variable thread
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Figure 12.8 Object scores labeled with variable head
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Figure 12.9 Object scores labeled with variable length
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Figure 12.10  Object scores labeled with variable brass
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Homogeneity Analysis Examples

193

Figure 12.8 shows that head discriminates in both dimensions. The FLAT objects group
together in the upper right corner of the plot, whereas the CUP objects group together in
the lower right. CONE objects all lie in the lower left. However, these objects are more
spread out than the other groups and, thus, are not as homogeneous. Finally, CYLINDER
objects cannot be separated from ROUND objects, both of which lie in the upper left cor-

ner of the plot.
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Figure 12.9 shows that length does not discriminate in the first dimension. The cate-
gories of length display no grouping when projected onto a horizontal line. However,
length does discriminate in the second dimension. The shorter objects correspond to
positive scores, and the longer objects correspond to large negative scores.

Figure 12.10 shows that brass has categories that can’t be separated very well in the
first or second dimensions. The object scores are widely spread throughout the space.
The brass objects cannot be differentiated from the nonbrass objects.

Omission of Outliers

In homogeneity analysis, outliers are objects that have too many unique features. As
noted in Figure 12.2, SCREWI might be considered an outlier.

» To delete this object and run the analysis again, from the menus choose:

Data
Select Cases...

® If condition is satisfied
Click If.
object ~=16

» Then, recall the Homogeneity Analysis dialog box.
P Label Object Scores Plot(s) by: brss_lab, ind_lab

Select ind_lab. Click Define Range.
Maximum: 3

Options...
Display
[0 Frequencies (deselect)
O Discrimination measures (deselect)
O Category quantifications (deselect)

Plot
O Category quantifications (deselect)

The solution changes considerably. The eigenvalues for a two-dimensional solution are
0.64 and 0.35.
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Figure 12.11  Eigenvalues

Eigenvalues

Dimension | Eigenvalue
1 .636
2 .347

As shown in the discrimination plot in Figure 12.12, indhead no longer discriminates in
the second dimension, whereas brass changes from no discrimination in either dimen-
sion to discrimination in the second dimension. Discrimination for the other variables is
largely unchanged.

Figure 12.12  Discrimination measures
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The object scores plot labeled by brass is shown in Figure 12.13. The four brass objects
all appear near the bottom of the plot (three objects occupy identical locations), indicat-
ing high discrimination along the second dimension. As was the case for thread in the
previous analysis, the objects do not form compact groups, but the differentiation of ob-
jects by categories is perfect.
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Figure 12.13  Object scores labeled with variable brass
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The object scores plot labeled by indhead is shown in Figure 12.14. The first dimension
discriminates perfectly between the non-indented objects and the indented objects, as in
the previous analysis. In contrast to the previous analysis, however, the second dimen-
sion cannot now distinguish the two indhead categories.

Thus, omission of SCREWI, which is the only object with a star-shaped head, dra-
matically affects the interpretation of the second dimension. This dimension now
differentiates objects based on brass, head, and length.

Figure 12.14  Object scores labeled with variable indhead
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Multidimensional Scaling Examples

Given a set of objects, the goal of multidimensional scaling is to find a representation
of the objects in a low-dimensional space. This solution is found using the proximities
between the objects. The procedure minimizes the squared deviations between the
original, possibly transformed, object proximities and their Euclidean distances in the
low-dimensional space.

The purpose of the low-dimensional space is to uncover relationships between the
objects. By restricting the solution to be a linear combination of independent variables,
you may be able to interpret the dimensions of the solution in terms of these variables.
In the following example, you will see how 15 different kinship terms can be repre-
sented in 3 dimensions, and how that space can be interpreted with respect to the
gender, generation, and degree of separation of each of the terms.

Example: An Examination of Kinship Terms

Rosenberg and Kim (1975) set out to analyze 15 kinship terms (aunt, brother, cousin,
daughter, father, granddaughter, grandfather, grandmother, grandson, mother, nephew,
niece, sister, son, uncle). They asked four groups of college students (two female, two
male) to sort these terms on the basis of similarities. Two groups (one female, one male)
were asked to sort twice, with the second sorting based on a different criteria from the
first sort. Thus, a total of six “sources” were obtained, as outlined in Table 13.1.

Table 13.1  Source structure of the kinship data

Source Gender Condition Sample size
1 Female Single sort 85
2 Male Single sort 85
3 Female First sort 80
4 Female Second sort 80
5 Male First sort 80
6 Male Second sort 80

Each source corresponds to a 15 X 15 proximity matrix, whose cells are equal to the
number of people in a source minus the number of times the objects were partitioned
together in that source. This data set can be found in kinship_dat.sav.
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Choosing the Number of Dimensions

It is up to you to decide how many dimensions the solution should have. A good tool to
help you make this decision is the scree plot. To create a scree plot, from the menus
choose:

Analyze
Scale
Multidimensional Scaling (PROXSCAL)...

Data Format
© The data are proximities

Number of Sources
®© Multiple matrix sources

Multiple Sources
®© The proximities are in stacked matrices across columns

Proximities: aunt, brother cousin, daughter, father, gdaugh, gfather, gmother, gson,
mother, nephew, niece, sister, son, uncle
Sources: sourceid

Model...

Dimensions
Maximum: 10

Restrictions...

Restrictions on Common Space
®© Linear combination of independent variables

Restriction Variables
Read variables from: kinship_var.sav
Selected: gender, gener, degree

Plots...
M Stress
O Common space (deselect)
O Individual space weights (deselect)
[0 Variable and dimension correlations (deselect)

Output...

[0 Common space coordinates (deselect)

O Individual space weights (deselect)

O Multiple stress measures (deselect)

[0 Transformed independent variables (deselect)
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Figure 13.1 Scree Plot
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The procedure begins with a 10-dimensional solution, and works down to a 2-dimen-
sional solution. The scree plot shows the normalized raw Stress of the solution at each
dimension. You can see from the plot that increasing the dimensionality from 2 to 3 and
from 3 to 4 offers large improvements in the Stress. After 4, the improvements are rather
small. You will choose to analyze the data using a 3-dimensional solution, since the re-
sults are easier to interpret.

A Three-Dimensional Solution

Independent variables gender, gener(ation), and degree (of separation) were constructed
with the intention of using them to interpret the dimensions of the solution. The inde-
pendent variables were constructed as follows:

gender 1=male, 2=female, 9=missing (for cousin)

gener The number of generations from you if the term refers to your kin, with
lower numbers corresponding to older generations. Thus, grandparents
are —2, grandchildren are 2, and siblings are 0.

degree The number of degrees of separation along your family tree. Thus, your
parents are up one node, while your children are down one node. Your
siblings are up one node to your parents, then down one node to them,
for 2 degrees of separation. Your cousin is 4 degrees away; 2 up to your
grandparents, then 2 down through your aunt/uncle to them.
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The external variables can be found in kinship_var.sav.

Figure 13.2 Independent variables

Variable
gender generation degree
Aunt 2.000 -1.000 3.000
Brother 1.000 .000 2.000
Cousin . .000 4.000
Daughter 2.000 1.000 1.000
Father 1.000 -1.000 1.000
Granddaughter 2.000 2.000 2.000
Grandfather 1.000 -2.000 2.000
Grandmother 2.000 -2.000 2.000
Grandson 1.000 2.000 2.000
Mother 2.000 -1.000 1.000
Nephew 1.000 1.000 3.000
Niece 2.000 1.000 3.000
Sister 2.000 .000 2.000
Son 1.000 1.000 1.000
Uncle 1.000 -1.000 3.000

Additionally, an initial configuration from an earlier analysis is supplied in
kinship_ini.sav. To obtain a three-dimensional solution, recall the Proximities in Matri-
ces Across Columns dialog box:

Model...
Dimensions
Minimum: 3
Maximum: 3

Options...

Initial Configuration
©®© Custom

Custom Configuration
Read variables from: kinship_ini.sav
Selected: dim01, dim02, dim03
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Plots...

O Stress (deselect)

M Common space

M Original vs. transformed proximities
M Transformed independent variables

Output...

M Input data

M Multiple stress measures

M Stress decomposition

M Variable and dimension correlations

Stress Measures

The Stress and fit measures give an indication of how well the distances in the solution
approximate the original distances.

Figure 13.3 Stress and fit measures

Normalized Raw Stress .06234
Stress-| 24968
Stress-I .87849
S-Stress 14716
Dispersion Accounted

For (D.AF.) 93766
Tucker's Coefficient of 96833
Congruence

Each of the four Stress statistics measures the misfit of the data, while the dispersion
accounted for and Tucker’s coefficient of congruence measure the fit. Lower Stress
measures (to a minimum of 0) and higher fit measures (to a maximum of 1) indicate
better solutions.
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Figure 13.4 Decomposition of normalized raw Stress

Source

SRC_1 [SRC_2 | SRC_3 | SRC_4 |SRC_5 | SRC_6 | Mean

Object | Aunt .0991 .0754 .0629 .0468 .0391 .0489 | .0620
Brother 1351 .0974 .0496 .0813 .0613 .0597 | .0807

Cousin .0325 .0336 .0480 .0290 .0327 .0463 | .0370
Daughter .0700 .0370 .0516 .0229 .0326 .0207 | .0391

Father .0751 .0482 .0521 .0225 .0272 .0298 | .0425
Granddaughter 1410 .0736 .0801 .0707 .0790 .0366 | .0802
Grandfather .1549 .1057 .0858 .0821 .0851 .0576 | .0952
Grandmother .1550 .0979 .0858 .0844 .0816 .0627 | .0946
Grandson 1374 .0772 .0793 .0719 .0791 .0382 | .0805

Mother .0813 .0482 .0526 .0229 .0260 .0227 | .0423

Nephew .0843 .0619 .0580 .0375 .0317 .0273 | .0501

Niece .0850 .0577 .0503 .0353 .0337 .0260 | .0480

Sister 1361 .0946 .0496 .0816 .0629 .0588 | .0806

Son .0689 .0373 .0456 .0242 .0337 .0253 | .0392

Uncle .0977 .0761 .0678 .0489 .0383 .0498 | .0631

Mean .1035 .0681 .0613 .0508 .0496 .0407 | .0623

The decomposition of Stress helps you to identify which sources and objects contribute
the most to the overall Stress of the solution. In this case, most of the Stress among the
sources is attributable to sources 1 and 2, while among the objects, most of the Stress is
attributable to Brother, Granddaughter, Grandfather, Grandmother, Grandson, and
Sister.

By referring to Table 13.1, you can see that the two sources accountable for most of
the Stress are the two groups that sorted the terms only once. This suggests that the stu-
dents considered multiple factors when sorting the terms, and those who were allowed
to sort twice focused on a portion of those factors for the first sort, and then considered
the remaining factors during the second sort.

The objects that account for most of the Stress are those with a degree of 2. These are
relations who are not part of the “nuclear” family (mother, father, daughter, son), but are
nonetheless closer than other relations. This middle position could easily cause some
differential sorting of these terms.
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Final Coordinates of the Common Space

The common space plot gives a visual representation of the relationships between the
objects. The following two figures are taken from the scatterplot matrix, for closer
viewing.

Figure 13.5 Common space coordinates (dimensions 1 and 3)
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Figure 13.5 shows the final coordinates for the objects in dimensions 1 and 3; this is the
plot in the lower-left corner of the scatterplot matrix. This plot shows that dimension 1
(on the x axis) is correlated with the variable gender and dimension 3 (on the y axis) is
correlated with gener. From left to right, you see that dimension 1 separates the female
and male terms, with the genderless term Cousin in the middle. From the bottom of the
plot to the top, increasing values along the axis correspond to terms that are older.
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Figure 13.6 Common space coordinates (dimensions 2 and 3)

1.0

Cousin
[ ]
.8
.6 Ni
Ner'%%%v
4 Lﬁ#’?&
2
([P
- er
N Erandpaehes”
S -2
2
o -4 D hter
IS @ﬁ* r
n -6
-8 -6 -4 -2 00 2 4 6 .8
Dimension 3

Figure 13.6 shows the final coordinates for the objects in dimensions 2 and 3; this is the
plot in the middle-right side of the scatterplot matrix. From this plot, you can see that
the second dimension (along the y axis) corresponds to the variable degree, with larger
values along the axis corresponding to terms that are further from the “nuclear” family.

Correlations

The correlations between the transformed independent variables and the dimensions of
the common space summarize the findings of the common space plot.

Figure 13.7 Correlations

Dimension
Variable 1 2 3
gender -.999 .062 .027
generation .013 -.118 .985
degree -.079 -.992 -.169

It may be disconcerting at first to see a negative correlation between dimension 2 and
degree, since both larger values of degree and larger values of dimension 2 correspond
to terms that are further from the “nuclear” family. A similar situation occurs with gener
and dimension 3. Increasing values of gener correspond to younger terms, while in-
creasing values of dimension 3 correspond to terms that are older, yet gener and dimen-
sion 3 are positively correlated. However, this is easily explained by the transformation
plots for degree and gener.
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Figure 13.8 Transformed degree and gener
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Since degree was scaled at the default interval level, its transformation plot is linear, but
the optimally scaled values of degree are negatively correlated with the original values.
This is shown by the downward slope of the line in the transformation plot. While the
original values of degree are positively correlated with dimension 1, the correlations in
the table are computed for the transformed values, and since the original values of de-
gree are negatively correlated with the transformed values, the correlation between di-
mension 2 and the transformed values is negative.

Likewise, since the optimally scaled values of gener are negatively correlated with
the original values, the correlation between dimension 3 and the transformed values is
positive.

A Three-Dimensional Solution with Nondefault Transformations

The previous solution was computed using the default ratio transformation for proxim-
ities and interval transformations for the independent variables. The results are pretty
good, but you may be able to do better by using other transformations. For example, gen-
der has no inherent ordering, so it may be better to scale at the nominal level. The prox-
imities, gener, and degree all have natural orderings, but they may be better modeled by
an ordinal transformation than a linear transformation. To rerun the analysis, scaling
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gender at the nominal level and the proximities, gener, and degree at the ordinal level
(keeping ties), recall the Proximities in Matrices Across Columns dialog box:

Model...

Proximity Transformations
® Ordinal

Restrictions...

Restriction Variables
Selected: gender, gener, degree

Select gender.
Independent variable transformation: Nominal

Select gener, degree.
Independent variable transformation: Ordinal (keep ties)

Plots...
M Common space
M Original vs. transformed proximities
M Transformed independent variables

Output...
[0 Input data (deselect)
M Multiple stress measures
O Stress decomposition (deselect)
O Variable and dimension correlations (deselect)

Transformation Plots

The transformation plots are a good first check to see whether the original transforma-
tions were appropriate. If the plots are approximately linear, then the linear assumption
is appropriate. If not, then you need to check the Stress measures to see if there is an
improvement in fit, and the common space plot to see if the interpretation is more useful.

The independent variables each obtain approximately linear transformations, so it
may be appropriate to interpret them as numerical. However, the proximities do not
obtain a linear transformation, so it is possible that the ordinal transformation is more
appropriate for the proximities.
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Figure 13.9 Transformed proximities
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Stress Measures

The Stress for the current solution supports the argument for scaling the proximities at
the ordinal level.

Figure 13.10  Stress and fit measures

Normalized Raw Stress .03157
Stress-I 17769
Stress-Il .62320
S-Stress .08231
Dispersion Accounted

For (D.AF.) 96843
Tucker's Coefficient of 98409
Congruence

The normalized raw Stress for the previous solution, found in Figure 13.3, is 0.06234.
Scaling the variables using nondefault transformations halves the Stress to 0.03157.
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Final Coordinates of the Common Space

The common space plots offer essentially the same interpretation of the dimensions as
the previous solution.

Figure 13.11 Common space coordinates
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Discussion

It is best to treat the proximities as ordinal variables, since there is a great improvement
in the Stress measures. As a next step, you may want to “untie” the ordinal variables—
that is, allow equivalent values of the original variables to obtain different transformed
values. For example, in the first source, the proximities between Aunt and Son, and Aunt
and Grandson, are 85. The “tied” approach to ordinal variables forces the transformed
values of these proximities to be equivalent, but there is no particular reason for you to
assume that they should be. In this case, allowing the proximities to become untied frees
you from an unnecessary restriction.
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Introduction

This syntax reference guide describes the SPSS command language underlying SPSS
Categories. Most of the features of these commands are implemented in the dialog boxes
and can be used directly from the dialog boxes. Or you can paste the syntax into a syntax
window and edit it or build a command file, which you can save and reuse. The features that
are available only in command syntax are summarized following the discussion of the dia-
log box interface in the corresponding chapter on each statistical procedure.

A Few Useful Terms

All terms in the SPSS command language fall into one or more of the following categories:

Keyword. A word already defined by SPSS to identify a command, subcommand, or speci-
fication. Most keywords are, or resemble, common English words.

Command. A specific instruction that controls the execution of SPSS.

Subcommand. Additional instructions for SPSS commands. A command can contain more
than one subcommand, each with its own specifications.

Specifications. Instructions added to a command or subcommand. Specifications may
include subcommands, keywords, numbers, arithmetic operators, variable names, special
delimiters, and so forth.

Each command begins with a command keyword (which may contain more than one
word). The command keyword is followed by at least one blank space and then any addi-
tional specifications. Each command ends with a command terminator, which is a period.
For example:

Specifications
Command —____ ymans __—

TABLES=salnow BY jobcat
Subcommands 4[
/CELLS=MEAN :— "~
\Keywords

Command terminator

Syntax Diagrams

Each SPSS command described in this manual includes a syntax diagram that shows all of
the subcommands, keywords, and specifications allowed for that command. These syntax
diagrams are also available in the online Help system for easy reference when entering
commands in a syntax window. By remembering the following rules, you can use the
syntax diagram as a quick reference for any command:

¢ Elements shown in all capital letters are keywords defined by SPSS to identify commands,
subcommands, functions, operators, and other specifications.

e Elements in lower case describe specifications you supply.
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Syntax Rules

Syntax Reference

e Elements in boldface type are defaults. A default indicated with two asterisks (**) is in
effect when the keyword is not specified. (Boldface is not used in the online Help system
syntax diagrams.)

e Parentheses, apostrophes, and quotation marks are required where indicated.
¢ Elements enclosed in square brackets ([ ]) are optional.

e Braces ({ }) indicate a choice among elements. You can specify any one of the elements
enclosed within the aligned braces.

¢ Ellipses indicate that an element can be repeated.

e Most abbreviations are obvious; for example, varname stands for variable name and varlist
stands for a list of variables.

e The command terminator is not shown in the syntax diagrams.

Keep in mind the following simple rules when writing and editing commands in a syntax
window:

e Each command must begin on a new line and end with a period.

e Subcommands are separated by slashes. The slash before the first subcommand in a
command is optional in most commands.

e SPSS keywords are not case-sensitive, and three-letter abbreviations can be used for most
keywords.

e Variable names must be spelled out in full.

® You can use as many lines as you want to specify a single command. However, text
included within apostrophes or quotation marks must be contained on a single line.

® You can add space or break lines at almost any point where a single blank is allowed, such
as around slashes, parentheses, arithmetic operators, or between variable names.

e Each line of syntax cannot exceed 80 characters.
e The period must be used as the decimal indicator, regardless of your language settings.

For example,

FREQUENCIES
VARIABLES=JOBCAT SEXRACE
/PERCENTILES=25 50 75
/BARCHART .

and
freq var=jobcat sexrace /percent=25 50 75 /bar.

are both acceptable alternatives that generate the same results. The second example uses
three-letter abbreviations and lower case, and the command is on one line.
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INCLUDE Files

If your SPSS commands are contained in a command file that is specified on the SPSS
INCLUDE command, the syntax rules are slightly different:

e Each command must begin in the first column of a new line.
e Continuation lines within a command must be indented at least one space.
e The period at the end of the command is optional.

If you generate command syntax by pasting dialog box choices into a syntax window, the for-
mat of the commands is suitable for both INCLUDE files and commands run in a syntax window.






ANACOR

Overview

Options

ANACOR TABLE={row var (min, max) BY column var (min, max)}
{ALL (# of rows, # of columns) }

[/DIMENSION={2** }]
{value}

[ /NORMALIZATION={CANONICAL**}]
{PRINCIPAL }
{RPRINCIPAL }
{CPRINCIPAL }
{value

[/VARIANCES=[SINGULAR] [ROWS] [COLUMNS] ]

[/PRINT=[TABLE**] [PROFILES] [SCORES**] [CONTRIBUTIONS**]
[DEFAULT] [PERMUTATION] [NONE]]

[/PLOT=[NDIM=({1, 2*%* 1]
{value, value}
{ALL, MAX
[ROWS** [ (n) ]] [COLUMNS** [ (n) ]] [DEFAULT[ (n)]]
[TRROWS] [TRCOLUMNS] [JOINT[(n)]] [NONE]]
[/MATRIX OUT=[SCORE ({* })1 [VARIANCE({* 111
{file} {file}

**Default if subcommand or keyword is omitted.

ANACOR performs correspondence analysis, which is an isotropic graphical representation
of the relationships between the rows and columns of a two-way table.

Number of dimensions. You can specify how many dimensions ANACOR should compute.

Method of normalization. You can specify one of five different methods for normalizing the
row and column scores.

Computation of variances and correlations. You can request computation of variances and cor-
relations for singular values, row scores, or column scores.

Data input. You can analyze the usual individual casewise data or aggregated data from
table cells.

Display output. You can control which statistics are displayed and plotted. You can also con-
trol how many value-label characters are used on the plots.

Writing matrices. You can write matrix data files containing row and column scores and
variances for use in further analyses.
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Basic Specification

e The basic specification is ANACOR and the TABLE subcommand. By default, ANACOR
computes a two-dimensional solution, displays the TABLE, SCORES, and CONTRIBUTIONS
statistics, and plots the row scores and column scores of the first two dimensions.

Subcommand Order

e Subcommands can appear in any order.

Operations

e If a subcommand is specified more than once, only the last occurrence is executed.

Limitations

e The data within table cells cannot contain negative values. ANACOR will treat such values
as 0.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PRINT=SCORES CONTRIBUTIONS
/PLOT=ROWS COLUMNS.

e Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has
values ranging from 1 to 4 and SES has values ranging from 1 to 6.

e The row and column scores and the contribution of each row and column to the inertia of
each dimension are displayed.

e Two plots are produced. The first one plots the first two dimensions of row scores and the
second one plots the first two dimensions of column scores.

TABLE Subcommand

TABLE specifies the row and column variables along with their value ranges for individual
casewise data. For table data, TABLE specifies the keyword ALL and the number of rows and
columns.

e The TABLE subcommand is required.
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Table Data

ANACOR 217

Each variable is followed by a value range in parentheses. The value range consists of the
variable’s minimum value, a comma, and its maximum value.

Values outside of the specified range are not included in the analysis.

Values do not have to be sequential. Empty categories receive scores of 0 and do not
affect the rest of the computations.

Example

DATA LIST FREE/VAR1 VAR2.
BEGIN DATA

Ok WwWooaoikxkwoWw

WNDNWWWNNRER R

END DATA.
ANACOR TABLE=VAR1 (3,6) BY VAR2(1,3).

DATA LIST defines two variables, VAR1 and VAR2.
VART1 has three levels, coded 3, 4, and 6, while VAR2 also has three levels, coded 1, 2, and 3.

Since a range of (3,6) is specified for VAR1, ANACOR defines four categories, coded 3, 4,
5, and 6. The empty category, 5, for which there is no data, receives zeros for all statistics
but does not affect the analysis.

The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.

The columns of the input table must be specified as variables on the DATA LIST command.
Only columns are defined, not rows.

ALL is followed by the number of rows in the table, a comma, and the number of columns
in the table, in parentheses.

The number of rows and columns specified can be smaller than the actual number of rows
and columns if you want to analyze only a subset of the table.

The variables (columns of the table) are treated as the column categories, and the cases
(rows of the table) are treated as the row categories.

Rows cannot be labeled when you specify TABLE=ALL. If labels in your output are impor-
tant, use the WEIGHT command method to enter your data (see “Analyzing Aggregated
Data” on p. 222).
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Example

DATA LIST /COLO1l TO COLO7 1-21.
BEGIN DATA

50 19 26 8 18 6 2

16 40 34 18 31 8 3

12 35 65 66123 23 21

11 20 58110223 64 32

14 36114185714258189

0 6 19 40179143 71
END DATA.
ANACOR TABLE=ALL(6,7).

e DATA LIST defines the seven columns of the table as the variables.

e The TABLE=ALL specification indicates that the data are the cells of a table. The (6,7)
specification indicates that there are six rows and seven columns.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want ANACOR to compute.
e If you do not specify the DIMENSION subcommand, ANACOR computes two dimensions.
e DIMENSION is followed by an integer indicating the number of dimensions.

¢ In general, you should choose as few dimensions as needed to explain most of the varia-
tion. The minimum number of dimensions that can be specified is 1. The maximum num-
ber of dimensions that can be specified is equal to the number of levels of the variable with
the least number of levels, minus 1. For example, in a table where one variable has five
levels and the other has four levels, the maximum number of dimensions that can be spec-
ified is (4 — 1), or 3. Empty categories (categories with no data, all zeros, or all missing
data) are not counted toward the number of levels of a variable.

e If more than the maximum allowed number of dimensions is specified, ANACOR reduces
the number of dimensions to the maximum.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row
and column scores. Only the scores and variances are affected; contributions and profiles are
not changed.

The following keywords are available:

CANONICAL For each dimension, rows are the weighted average of columns divided by
the matching singular value, and columns are the weighted average of rows
divided by the matching singular value. This is the default if the
NORMALIZATION subcommand is not specified. DEFAULT is an alias for
CANONICAL. Use this normalization method if you are primarily interested
in differences or similarities between variables.

PRINCIPAL Distances between row points and column points are approximations of chi-
square distances. The distances represent the distance between the row or
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column and its corresponding average row or column profile. Use this
normalization method if you want to examine both differences between
categories of the row variable and differences between categories of the col-
umn variable (but not differences between variables).

RPRINCIPAL Distances between row points are approximations of chi-square distances.
This method maximizes distances between row points. This is useful when
you are primarily interested in differences or similarities between categories
of the row variable.

CPRINCIPAL Distances between column points are approximations of chi-square
distances. This method maximizes distances between column points. This is
useful when you are primarily interested in differences or similarities be-
tween categories of the column variable.

The fifth method has no keyword. Instead, any value in the range -2 to +2 is specified after
NORMALIZATION. A value of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to
CANONICAL, and a value of —1 is equal to the CPRINCIPAL method. The inertia is spread
over both row and column scores. This method is useful for interpreting joint plots.

VARIANCES Subcommand

Use VARIANCES to display variances and correlations for the singular values, the row scores,
and/or the column scores. If VARIANCES is not specified, variances and correlations are not
included in the output.

The following keywords are available:

SINGULAR Variances and correlations of the singular values.
ROWS Variances and correlations of the row scores.
COLUMNS Variances and correlations of the column scores.

PRINT Subcommand

Use PRINT to control which of several correspondence statistics are displayed. If PRINT is
not specified, the numbers of rows and columns, all nontrivial singular values, proportions
of inertia, and the cumulative proportion of inertia accounted for are displayed.

The following keywords are available:

TABLE A crosstabulation of the input variables showing row and column
marginals.
PROFILES The row and column profiles. PRINT=PROFILES is analogous to the

CELLS=ROW COLUMN subcommand in CROSSSTABS.

SCORES The marginal proportions and scores of each row and column.
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CONTRIBUTIONS

PERMUTATION

NONE
DEFAULT

PLOT Subcommand

The contribution of each row and column to the inertia of each dimen-
sion, and the proportion of distance to the origin accounted for in each
dimension.

The original table permuted according to the scores of the rows and
columns for each dimension.

No output other than the singular values.

TABLE, SCORES, and CONTRIBUTIONS. These statistics are displayed
if you omit the PRINT subcommand.

Use PLOT to produce plots of the row scores, column scores, row and column scores, trans-
formations of the row scores, and transformations of the column scores. If PLOT is not spec-
ified, a plot of the row scores in the first two dimensions and a plot of the column scores in
the first two dimensions are produced.

The following keywords are available:

TRROWS
TRCOLUMNS
ROWS
COLUMNS
JOINT

NONE
DEFAULT

Plot of transformations of the row category values into row scores.

Plot of transformations of the column category values into column scores.
Plot of row scores.

Plot of column scores.

A combined plot of the row and column scores. This plot is not available
when NORMALIZATION=PRINCIPAL.

No plots.
ROWS and COLUMNS.

e The keywords ROWS, COLUMNS, JOINT, and DEFAULT can be followed by an integer val-
ue in parentheses to indicate how many characters of the value label are to be used on the
plot. The value can range from 1 to 20; the default is 3. Spaces between words count as

characters.

e TRROWS and TRCOLUMNS plots use the full value labels up to 20 characters.
e Ifalabel is missing for any value, the actual values are used for all values of that variable.

e Value labels should be unique.

e The first letter of a label on a plot marks the place of the actual coordinate. Be careful that
multiple-word labels are not interpreted as multiple points on a plot.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 by dimension 2.
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e The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

e The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

e Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

e Keyword MAX can be used instead of the second value to indicate that plots should be pro-
duced up to, and including, the highest dimension fit by the procedure.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(1,3) JOINT(5).

e The NDIM (1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

e JOINT requests combined plots of row and column scores. The (5) specification indicates
that the first five characters of the value labels are to be used on the plots.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(ALL,3) JOINT(5).

e This plot is the same as above except for the ALL specification following NDIM. This in-
dicates that all possible pairs up to the second value should be plotted, so JOINT plots will
be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3, and
dimension 1 versus dimension 3.

MATRIX Subcommand

Use MATRIX to write row and column scores and variances to matrix data files.

MATRIX is followed by keyword OUT, an equals sign, and one or both of the following

keywords:
SCORE (file) Write row and column scores to a matrix data file.
VARIANCE (file) Write variances to a matrix data file.

® You can specify the file with either an asterisk (¥) to replace the working data file with
the matrix file or the name of an external file.

e If you specify both SCORE and VARIANCE on the same MATRIX subcommand, you must
specify two different files.

The variables in the SCORE matrix data file and their values are:

ROWTYPE_ String variable containing the value ROW for all of the rows and
COLUMN for all of the columns.

LEVEL String variable containing the values (or value labels, if present) of
each original variable.
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VARNAME_ String variable containing the original variable names.

DIM1...DIMn Numeric variables containing the row and column scores for each
dimension. Each variable is labeled DIMn, where n represents the
dimension number.

The variables in the VARIANCE matrix data file and their values are:

ROWTYPE_ String variable containing the value COV for all of the cases in the
file.

SCORE String variable containing the values SINGULAR, ROW, and
COLUMN.

LEVEL String variable containing the system-missing value for SINGULAR
and the sequential row or column number for ROW and COLUMN.

VARNAME_ String variable containing the dimension number.

DIM1...DIMn Numeric variable containing the covariances for each dimension.

Each variable is labeled DIMn, where n represents the dimension number.

See the SPSS Syntax Reference Guide for more information on matrix data files.

Analyzing Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are avail-
able but the original raw data are not, you can use the TABLE=ALL option or the WEIGHT com-
mand before ANACOR.

Example

To analyze a 3 X 3 table such as the one shown in Table 1, you could use these commands:
DATA LIST FREE/ BIRTHORD ANXIETY COUNT.

BEGIN DATA

1 48

WWWNONNR R
WNRPWNDREWN
w
el

END DATA.

WEIGHT BY COUNT.

ANACOR TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

e The WEIGHT command weights each case by the value of COUNT, as if there are 48 sub-
jects with BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2,
and so on.

e ANACOR can then be used to analyze the data.

e If any of the table cell values equal 0, the WEIGHT command issues a warning, but the
ANACOR analysis is done correctly.
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e The table cell values (the WEIGHT values) cannot be negative. WEIGHT changes system-
missing and negative values to 0.

e For large aggregated tables, you can use the TABLE=ALL option or the transformation
language to enter the table “as is.”

Tablel 3x3table

Anxiety
High Med Low
First 48 27 22
Birth order | Second 33 20 39
Other 29 42 47
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CATPCA [VARIABLES =] varlist

/ANALYSIS varlist
[[ (WEIGHT={1**}] [LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}]]

{n } {n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}
{ORDI }
{NOMI }
{MNOM }
{NUME }
[/DISCRETIZATION = [varlist [([{GROUPING}] [{NCAT={7}}] [DISTR={NORMAL }])]]]
{n} {UNIFORM}
{RANKING } {EQINTV={n}}
{MULTIPLYING}
[/MISSING = [varlist [([{PASSIVE**}] [{MODEIMPU}])]]]
{EXTRACAT}
{ACTIVE } {MODEIMPU}
{EXTRACAT}
{LISTWISE}
[ /SUPPLEMENTARY = [OBJECT (varlist)] [VARIABLE (varlist)]]
[/CONFIGURATION = [{INITIAL}] (file)]
{FIXED }

[/DIMENSION = {2%%}
{n }

[ /NORMALIZATION = {VPRINCIPAL**}]
{OPRINCIPAL }
{SYMMETRICAL }
{INDEPENDENT }
{n }

[/MAXITER = {100%**}
{n }

[/CRITITER = {.00001%*}]

{value }
[/PRINT = [DESCRIP**[ (varlist)]] [VAF] [LOADING**] [QUANT[ (varlist)]][HISTORY]
[CORR**] [OCORR] [OBJECT[ ([ (varname) Jvarlist)]] [NONE]]
[/PLOT = [OBJECT**[ (varlist)][(n)]]
[LOADING** [ (varlist [ (CENTR[ (varlist)])])]1[(n)]
[CATEGORY (varlist)[(n)]]
[JOINTCAT[ ({varlist})]l[(n)]] [TRANS[ (varlist[({1})1]1)]
{n}
[BIPLOT[ ({LOADING} [ (varlist)]) [ (varlist)]] [(n)]
{CENTR }
[TRIPLOT[ (varlist[ (varlist)])]1[(n)]
[RESID (varlist[({1})1)[(1)]1]
[PROJCENTR (varname, varlist)[(n)]] [NONE]]
{n}
[/SAVE = [TRDATA[ ({TRA }[{n}]1)]1] [OBJECTI ({OBSCO }{n}1) 1]
{rootname} {rootname}
[APPROX[ ({APP 1111
{rootname}
[/OUTFILE = [TRDATA*[(file)]] [DISCRDATA[ (file)]
[OBJECT[ (file)]] [APPROX[ (file)]1].

*#% Default if the subcommand is omitted.

225
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Overview

CATPCA performs principal components analysis on a set of variables. The variables can be
given mixed optimal scaling levels, and the relationships among observed variables are not
assumed to be linear.

In CATPCA, dimensions correspond to components (that is, an analysis with two
dimensions results in two components), and object scores correspond to component scores.

Options

Optimal scaling level. You can specify the optimal scaling level (spline ordinal, spline nominal,
ordinal, nominal, multiple nominal, or numerical) at which you want to analyze each
variable.

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables.

Missing data. You can specify the treatment of missing data on a per variable basis with the
MISSING subcommand.

Supplementary objects and variables. You can specify objects and variables that you want to
treat as supplementary to the analysis and then fit them into the solution.

Read configuration. CATPCA can read a principal components configuration from a file
through the CONFIGURATION subcommand. This can be used as the starting point for your
analysis or as a fixed solution in which to fit objects and variables.

Number of dimensions. You can specify how many dimensions (components) CATPCA should
compute.

Normalization. You can specify one of five different options for normalizing the objects and
variables.

Tuning the algorithm. You can control the values of algorithm-tuning parameters with the
MAXITER and CRITITER subcommands.

Optional output. You can request optional output through the PRINT subcommand.

Optional plots. You can request a plot of object points, transformation plots per variable, and
plots of category points per variable or a joint plot of category points for specified variables.
Other plot options include residuals plots, a biplot, a triplot, component loadings plot, and a
plot of projected centroids.

Writing discretized data, transformed data, object (component) scores, and approximations. You
can write the discretized data, transformed data, object scores, and approximations to
external files for use in further analyses.

Saving transformed data, object (component) scores, and approximations. You can save the trans-
formed variables, object scores, and approximations to the working data file.
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Basic Specification

The basic specification is the CATPCA command with the VARIABLES and ANALYSIS
subcommands.

Syntax Rules

e The VARIABLES and ANALYSIS subcommands must always appear, and the VARIABLES
subcommand must be the first subcommand specified. The other subcommands can be
specified in any order.

e Variables specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

e Variables specified in the SUPPLEMENTARY subcommand must be found in the
ANALYSIS subcommand.

Operations

e [If a subcommand is repeated, it causes a syntax error and the procedure terminates.

Limitations

e CATPCA operates on category indicator variables. The category indicators should be
positive integers. You can use the DISCRETIZATION subcommand to convert fractional-
value variables and string variables into positive integers.

e In addition to system-missing values and user-defined missing values, CATPCA treats
category indicator values less than 1 as missing. If one of the values of a categorical
variable has been coded 0 or a negative value and you want to treat it as a valid category,
use the COMPUTE command to add a constant to the values of that variable such that the
lowest value will be 1 (see the COMPUTE command or the SPSS Base User’s Guide for
more information on COMPUTE). You can also use the RANKING option of the
DISCRETIZATION subcommand for this purpose, except for variables you want to treat as
numerical, since the characteristic of equal intervals in the data will not be maintained.

e There must be at least three valid cases.
e Split-file has no implications for CATPCA.
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Example

CATPCA VARIABLES = TEST1 TEST2 TEST3 TO TEST6 TEST7 TESTS8
/ANALYSIS = TEST1 TO TEST2 (WEIGHT=2 LEVEL=ORDI)
TEST3 TO TEST5 (LEVEL=SPORD INKNOT=3)
TEST6 TEST7 (LEVEL=SPORD DEGREE=3)
TESTS8 (LEVEL=NUME )
/DISCRETIZATION = TEST1 (GROUPING NCAT=5 DISTR=UNIFORM)
TEST6 (GROUPING) TEST8 (MULTIPLYING)
/MISSING = TEST5 (ACTIVE) TEST6 (ACTIVE EXTRACAT) TEST8(LISTWISE)
/SUPPLEMENTARY = OBJECT (1 3) VARIABLE(TESTI1)
/CONFIGURATION = (’iniconf.sav’)
/DIMENSION = 2
/NORMALIZATION = VPRINCIPAL
/MAXITER = 150
/JCRITITER = .000001
/PRINT = DESCRIP LOADING CORR QUANT (TEST1 TO TEST3) OBJECT
/PLOT = TRANS(TEST2 TO TEST5) OBJECT (TEST2 TEST3)
/SAVE = TRDATA OBJECT
/OUTFILE = TRDATA(’c:\datal\trans.sav’) OBJECT(’c:\data\obs.sav’).

e VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file.

e The ANALYSIS subcommand defines variables used in the analysis. It is specified that
TEST1 and TEST2 have a weight of 2. For the other variables, WEIGHT is not specified;
thus, they have the default weight value of 1. The optimal scaling level for TEST? and
TEST2 is ordinal, for TEST3 to TEST7 spline ordinal, and for TEST8 numerical. The
keyword TO refers to the order of the variables in the VARIABLES subcommand. The
splines for TEST3 to TEST5 have degree 2 (default because unspecified) and 3 interior
knots. The splines for TEST6 and TEST7 have degree 3 and 2 interior knots (default
because unspecified).

e DISCRETIZATION specifies that TEST6 and TEST8, which are fractional-value variables,
are discretized: TEST6 by recoding into 7 categories with a normal distribution (default
because unspecified) and TEST8 by “multiplying.” TEST?, which is a categorical
variable, is recoded into 5 categories with a close-to-uniform distribution.

e MISSING specifies that objects with missing values on TEST5 and TESTS are included in
the analysis; missing values on TEST5 are replaced with the mode (default if not speci-
fied) and missing values on TEST6 are treated as an extra category. Objects with a missing
value on TESTS8 are excluded from the analysis. For all other variables, the default is in
effect; that is, missing values (Note: values, not objects) are excluded from the analysis.

e CONFIGURATION specifies iniconf.sav as the file containing the coordinates of a configu-
ration that is to be used as the initial configuration (default because unspecified).

e DIMENSION specifies the number of dimensions to be 2; that is, 2 components are
computed. This is the default, so this subcommand could be omitted here.

e The NORMALIZATION subcommand specifies optimization of the association between
variables, and the normalization is given to the objects. This is the default, so this sub-
command could be omitted here.

e MAXITER specifies the maximum number of iterations to be 150 instead of the default
value of 100.

e CRITITER sets the convergence criterion to a value smaller than the default value.
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PRINT specifies descriptives, component loadings and correlations (all default),
quantifications for TEST? to TEST3, and the object (component) scores.

PLOT is used to request transformation plots for the variables TEST2 to TEST5, an object
points plot labeled with the categories of TEST2, and an object points plot labeled with
the categories of TEST3.

The SAVE subcommand adds the transformed variables and the component scores to the
working data file.

The OUTFILE subcommand writes the transformed data to a data file called trans.sav and
the component scores to a data file called obs.sav, both in the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATPCA procedure.

The VARIABLES subcommand is required and precedes all other subcommands. The
actual keyword VARIABLES can be omitted.

At least two variables must be specified, except if the CONFIGURATION subcommand is
used with the FIXED keyword.

The keyword TO on the VARIABLES subcommand refers to the order of variables in the
working data file. This behavior of TO is different from that in the variable list in the
ANALYSIS subcommand.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the computations, the optimal scaling level,
and the variable weight for each variable or variable list. ANALYSIS also specifies supplemen-
tary variables and their optimal scaling level. No weight can be specified for supplementary
variables.

At least two variables must be specified, except if the CONFIGURATION subcommand is
used with the FIXED keyword.

All the variables on ANALYSIS must be specified on the VARIABLES subcommand.
The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

The keyword TO in the variable list honors the order of variables in the VARIABLES
subcommand.

Optimal scaling levels and variable weights are indicated by the keywords LEVEL and
WEIGHT in parentheses following the variable or variable list.

WEIGHT Specifies the variable weight with a positive integer. The default value is 1.

If WEIGHT is specified for supplementary variables, it is ignored and a syntax
warning is issued.

LEVEL Specifies the optimal scaling level.



230 Syntax Reference

Level Keyword

The following keywords are used to indicate the optimal scaling level:

SPORD

SPNOM

MNOM

ORDI

NOMI

NUME

Spline ordinal (monotonic). This is the default. The order of the categories
of the observed variable is preserved in the optimally scaled variable.
Category points will be on a straight line (vector) through the origin. The
resulting transformation is a smooth monotonic piecewise polynomial of the
chosen degree. The pieces are specified by the user-specified number and
procedure-determined placement of the interior knots.

Spline nominal (nonmonotonic). The only information in the observed
variable that is preserved in the optimally scaled variable is the grouping of
objects in categories. The order of the categories of the observed variable is
not preserved. Category points will lie on a straight line (vector) through the
origin. The resulting transformation is a smooth, possibly nonmonotonic,
piecewise polynomial of the chosen degree. The pieces are specified by the
user-specified number and procedure-determined placement of the interior
knots.

Multiple nominal. The only information in the observed variable that is
preserved in the optimally scaled variable is the grouping of objects in
categories. The order of the categories of the observed variable is not
preserved. Category points will be in the centroid of the objects in the
particular categories. Multiple indicates that different sets of quantifications
are obtained for each dimension.

Ordinal. The order of the categories on the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line
(vector) through the origin. The resulting transformation fits better than
SPORD transformation but is less smooth.

Nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The
order of the categories of the observed variable is not preserved. Category
points will be on a straight line (vector) through the origin. The resulting
transformation fits better than SPNOM transformation but is less smooth.

Numerical. Categories are treated as equally spaced (interval level). The
order of the categories and the equal distances between category numbers of
the observed variables are preserved in the optimally scaled variable.
Category points will be on a straight line (vector) through the origin. When
all variables are scaled at the numerical level, the CATPCA analysis is
analogous to standard principal components analysis.
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SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM:

DEGREE The degree of the polynomial. It can be any positive integer. The default
degree is 2.
INKNOT The number of interior knots. The minimum is 0, and the maximum is the

number of categories of the variable minus 2. The procedure adjusts the
number of interior knots to the maximum if the specified value is too large.
The default number of interior knots is 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables you want to discretize. Also, you can

use DISCRETIZATION for ranking or for two ways of recoding categorical variables.

e A string variable’s values are always converted into positive integers, according to the
internal numeric representations. DISCRETIZATION for string variables applies to these
integers.

e When the DISCRETIZATION subcommand is omitted or when the DISCRETIZATION
subcommand is used without a variable list, fractional-value variables are converted into
positive integers by grouping them into seven categories with a close to “normal”
distribution.

e When no specification is given for variables in a variable list following DISCRETIZATION,
these variables are grouped into seven categories with a close to “normal” distribution.

e In CATPCA, values less than 1 are considered to be missing (see MISSING subcommand).
However, when discretizing a variable, values less than 1 are considered to be valid and
are thus included in the discretization process.

GROUPING Recode into the specified number of categories.

RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on
the variable.

MULTIPLYING Multiplying the standardized values of a fractional-value variable by
10, rounding, and adding a value such that the lowest value is 1.

GROUPING Keyword

GROUPING has the following keywords:

NCAT Number of categories. When NCAT is not specified, the number of categories
is set to 7. You may either specify a number of categories or use the keyword
DISTR.

EQINTV Recode intervals of equal size. The size of the intervals must be specified (no

default). The resulting number of categories depends on the interval size.
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DISTR Keyword

DISTR has the following keywords:

NORMAL Normal distribution. This is the default when DISTR is not specified.
UNIFORM Uniform distribution.
MISSING Subcommand

In CATPCA, we consider a system-missing value, user-defined missing values, and values
less than 1 as missing values. The MISSING subcommand allows you to indicate how to
handle missing values for each variable.

PASSIVE

ACTIVE

LISTWISE

Exclude missing values on a variable from analysis. This is the default when
MISSING is not specified. Passive treatment of missing values means that in
optimizing the quantification of a variable, only objects with nonmissing
values on the variable are involved and that only the nonmissing values of
variables contribute to the solution. Thus, when PASSIVE is specified,
missing values do not affect the analysis. Further, if all variables are given
passive treatment of missing values, then objects with missing values on
every variable are treated as supplementary.

Impute missing values. You can choose to use mode imputation. You can
also consider objects with missing values on a variable as belonging to the
same category and impute missing values with an extra category indicator.

Exclude cases with missing value on a variable. The cases used in the
analysis are cases without missing values on the variables specified. This is the
default applied to all variables when the MISSING subcommand is omitted or
is specified without variable names or keywords. Also, any variable that is not
included in the subcommand receives this specification.

e The ALL keyword may be used to indicate all variables. If it is used, it must be the only
variable specification.

e A mode or extracat imputation is done before listwise deletion.

PASSIVE Keyword

If correlations are requested on the PRINT subcommand and passive treatment of missing
values is specified for a variable, the missing values must be imputed. For the correlations of
the quantified variables, you can specify the imputation with one of the following keywords:

MODEIMPU

EXTRACAT

Impute missing values on a variable with the mode of the quantified variable.
MODEIMPU is the default.

Impute missing values on a variable with the quantification of an extra
category. This implies that objects with a missing value are considered to
belong to the same (extra) category.

Note that with passive treatment of missing values, imputation applies only to correlations and
is done afterward. Thus, the imputation has no effect on the quantification or the solution.
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ACTIVE Keyword

The ACTIVE keyword has the following keywords:

MODEIMPU Impute missing values on a variable with the most frequent category (mode).
When there are multiple modes, the smallest category indicator is used.
MODEIMPU is the default.

EXTRACAT Impute missing values on a variable with an extra category indicator. This
implies that objects with a missing value are considered to belong to the
same (extra) category.

Note that with active treatment of missing values, imputation is done before the analysis
starts and thus will affect the quantification and the solution.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects and/or variables that you want to
treat as supplementary. Supplementary variables must be found in the ANALYSIS
subcommand. You cannot weight supplementary objects and variables (specified weights are
ignored). For supplementary variables, all options on the MISSING subcommand can be
specified except LISTWISE.

e The SUPPLEMENTARY subcommand is ignored when CONFIGURATION=FIXED.

OBJECT Objects you want to treat as supplementary are indicated with an object
number list in parentheses following OBJECT. The keyword TO is allowed.

VARIABLE Variables you want to treat as supplementary are indicated with a variable
list in parentheses following VARIABLE. The keyword TO is allowed and hon-
ors the order of variables in the VARIABLES subcommand.

CONFIGURATION Subcommand

The CONFIGURATION subcommand allows you to read data from a file containing the coor-
dinates of a configuration. The first variable in this file should contain the coordinates for the
first dimension, the second variable should contain the coordinates for the second dimension,
and so forth.

INITIAL(file) Use configuration in the external file as the starting point of the analysis.

FIXED(file) Fit objects and variables in the fixed configuration found in the external file.
The variables to fit in should be specified on the ANALYSIS subcommand but
will be treated as supplementary. The SUPPLEMENTARY subcommand and
variable weights are ignored.
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DIMENSION Subcommand

DIMENSION specifies the number of dimensions (components) you want CATPCA to
compute.

The default number of dimensions is 2.
DIMENSION is followed by an integer indicating the number of dimensions.

If there are no variables specified as MNOM (multiple nominal), the maximum number of
dimensions you can specify is the smaller of the number of observations minus 1 and the
total number of variables.

If some or all of the variables are specified as MNOM (multiple nominal), the maximum
number of dimensions is the smaller of a) the number of observations minus 1 or b) the
total number of valid MNOM variable levels (categories) plus the number of SPORD,
SPNOM, ORDI, NOMI, and NUME variables minus the number of MNOM variables without
missing values.

CATPCA adjusts the number of dimensions to the maximum if the specified value is too
large.

The minimum number of dimensions is 1.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five options for normalizing the object
scores and the variables. Only one normalization method can be used in a given analysis.

VPRINCIPAL This option optimizes the association between variables. With

VPRINCIPAL, the coordinates of the variables in the object space are
the component loadings (correlations with principal components such
as dimensions and object scores). This is the default if the
NORMALIZATION subcommand is not specified. This is useful when
you are primarily interested in the correlations between the variables.

OPRINCIPAL This option optimizes distances between objects. This is useful when
you are primarily interested in differences or similarities between the
objects.

SYMMETRICAL Use this normalization option if you are primarily interested in the

relation between objects and variables.

INDEPENDENT Use this normalization option if you want to examine distances

between objects and correlations between variables separately.

The fifth method allows the user to specify any real value in the closed interval [-1, 1]. A
value of 1 is equal to the OPRINCIPAL method, a value of O is equal to the SYMMETRICAL
method, and a value of —1 is equal to the VPRINCIPAL method. By specifying a value greater
than —1 and less than 1, the user can spread the eigenvalue over both objects and variables.
This method is useful for making a tailor-made biplot or triplot. If the user specifies a value
outside of this interval, the procedure issues a syntax error message and terminates.
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MAXITER Subcommand

MAXITER specifies the maximum number of iterations the procedure can go through in its
computations. If not all variables are specified as NUME and/or MNOM, the output starts from
iteration 0, which is the last iteration of the initial phase, in which all variables except MNOM
variables are treated as NUME.

e If MAXITER is not specified, the maximum number of iterations is 100.

e The specification on MAXITER is a positive integer indicating the maximum number of
iterations. There is no uniquely predetermined (that is, hard-coded) maximum for the
value that can be used.

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATPCA stops iterating if the difference in
fit between the last two iterations is less than the CRITITER value.

e If CRITITER is not specified, the convergence value is 0.00001.
e The specification on CRITITER is any value less than or equal to 0.1.

PRINT Subcommand

The model summary and the HISTORY statistics for the last iteration are always displayed.
That is, they cannot be controlled by the PRINT subcommand. The PRINT subcommand
controls the display of additional optional output. The output of the procedure is based on the
transformed variables. However, the correlations of the original variables can be requested
as well by the keyword OCORR.

The default keywords are DESCRIP, LOADINGS, and CORR. However, when some key-
words are specified, the default is nullified and only what was specified comes into effect. If
akeyword is duplicated or if a contradicting keyword is encountered, then the last one silent-
ly becomes effective (in case of contradicting use of NONE, this means that only the key-
words following NONE are effective). For example,

/PRINT <=> /PRINT = DESCRIP LOADING CORR
/PRINT = VAF VAF <=> /PRINT = VAF
/PRINT = VAF NONE CORR <=> /PRINT = CORR

If a keyword that can be followed by a variable list is duplicated, it will cause a syntax error,
and the procedure will terminate.

The following keywords can be specified:

DESCRIP(varlist) Descriptive statistics (frequencies, missing values, optimal scaling
level, and mode). The variables in the varlist must be specified on the
VARIABLES subcommand but need not appear on the ANALYSIS sub-
command. If DESCRIP is not followed by a varlist, descriptives tables
are displayed for all the variables in the varlist on the ANALYSIS
subcommand.
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VAF

LOADING

QUANT (varlist)

HISTORY

CORR

OCORR

Variance accounted for (centroid coordinates, line coordinates, and
total) per variable and per dimension.

Component loadings for variables with optimal scaling level that
result in line quantification (that is, SPORD, SPNOM, ORDI, NOMI, and
NUME).

Category quantifications and category coordinates for each
dimension. Any variable in the ANALYSIS subcommand may be
specified in parentheses after QUANT. (For MNOM variables, the
coordinates are the quantifications.) If QUANT is not followed by a
variable list, quantification tables are displayed for all variables in the
varlist on the ANALYSIS subcommand.

History of iterations. For each iteration (including 0), the variance
accounted for, the variance not accounted for, and the increase in
variance accounted for are shown.

Correlations of the transformed variables and the eigenvalues of this
correlation matrix. If the analysis includes variables with optimal
scaling level MNOM, ndim (the number of dimensions in the analysis)
correlation matrices are computed; in the ith matrix, the quantifica-
tions of dimension i, i = 1,...ndim, of MNOM variables are used to com-
pute the correlations. For variables with missing values specified to be
treated as PASSIVE on the MISSING subcommand, the missing values
are imputed according to the specification on the PASSIVE keyword (if
not specified, mode imputation is used).

Correlations of the original variables and the eigenvalues of this
correlation matrix. For variables with missing values specified to be
treated as PASSIVE or ACTIVE on the MISSING subcommand, the
missing values are imputed with the variable mode.

OBJECT((varname)varlist)

NONE

Object scores (component scores). Following the keyword, a varlist
can be given in parentheses to display variables (category indicators)
along with object scores. If you want to use a variable to label the
objects, this variable must occur in parentheses as the first variable in
the varlist. If no labeling variable is specified, the objects are labeled
with case numbers. The variables to display along with the object
scores and the variable to label the objects must be specified on the
VARIABLES subcommand but need not appear on the ANALYSIS
subcommand. If no variable list is given, only the object scores are
displayed.

No optional output is displayed. The only output shown is the model
summary and the HISTORY statistics for the last iteration.
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The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS
subcommand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS
subcommand, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO
v5 and /ANALYSIS = v2 vl v4,then /PLOT OBJECT (vl TO v4) will give two
object plots, one labeled with v7 and one labeled with v4.

PLOT Subcommand

The PLOT subcommand controls the display of plots. The default keywords are OBJECT and
LOADING. That is, the two keywords are in effect when the PLOT subcommand is omitted or
when the PLOT subcommand is given without any keyword. If a keyword is duplicated (for
example, /PLOT = RESID RESID), then only the last one is effective. If the keyword NONE is
used together with other keywords (for example, /PLOT = RESID NONE LOADING), then only
the keywords following NONE are effective. That is, when keywords contradict, the later one
overwrites the earlier ones.

o All the variables to be plotted must be specified on the ANALYSIS subcommand.

o [f the variable list following the keywords CATEGORIES, TRANS, RESID, and PROJCENTR
is empty, it will cause a syntax error, and the procedure will terminate.

e The variables in the variable list for labeling the object point following OBJECT, BIPLOT,
and TRIPLOT must be specified on the VARIABLES subcommand but need not appear on
the ANALYSIS subcommand. This means that variables not included in the analysis can
still be used to label plots.

e The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS sub-
command, the keyword TO cannot be used. For example, if /VARIABLES = vl TO v5
and /ANALYSIS = v2 v1 v4,then /PLOT OBJECT (vl TO v4) will give two
object plots, one labeled with v7 and one labeled with v4.

¢ For a one-dimensional solution, only unidimensional plots (transformation plot, residuals
plot, and plot of projected centroids) are produced.

e For multidimensional plots, all of the dimensions specified on the DIMENSION subcom-
mand are produced in a matrix scatterplot if the specified number of dimensions is greater
than two; if the specified number of dimensions is two, a scatterplot is produced.

The following keywords can be specified:

OBJECT (varlist)(n) Plots of the object points. Following the keyword, a list of variables in
parentheses can be given to indicate that plots of object points labeled
with the categories of the variables should be produced (one plot for
each variable). If the variable list is omitted, a plot labeled with case
numbers is produced.
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CATEGORY (varlist)(n)

Plots of the category points. Both the centroid coordinates and the line
coordinates are plotted. A list of variables must be given in parenthe-
ses following the keyword. For variables with optimal scaling level
MNOM, categories are in the centroids of the objects. For all other
optimal scaling levels, categories are on a vector through the origin.

LOADING(varlist(CENTR(varlist)))(l)

TRANS(varlist(n))

RESID(varlist(n))(n)

Plot of the component loadings optionally with centroids. By default,
all variables with an optimal scaling level that results in vector quan-
tification (that is, SPORD, SPNOM, ORDI, NOMI, and NUME) are
included in this plot. LOADING can be followed by a varlist to select
the loadings to include in the plot. When "LOADING(" or the varlist
following "LOADING(" is followed by the keyword CENTR in parenthe-
ses, centroids are plotted for all variables with optimal scaling level
MNOM. CENTR can be followed by a varlist in parentheses to select
MNOM variables whose centroids are to be included in the plot. When
there is no variable whose optimal scaling level is SPORD, SPNOM,
ORDI, NOMI, or NUME in the analysis, this plot cannot be produced.

Transformation plots (optimal category quantifications against cate-
gory indicators). A list of variables must be given in parentheses
following the keyword. MNOM variables in the varlist can be followed
by a number of dimensions in parentheses to indicate that you want to
display p transformation plots, one for each of the first p dimensions.

Plot of residuals per variable. Following the keyword, a list of vari-
ables in parentheses must be given. A variable with optimal scaling
level MNOM can be followed by a number in parentheses to indicate
the number of dimensions you want a residuals plot for. If the number
of dimensions is not specified, a plot for the first dimension is
produced.

BIPLOT(keyword(varlist))(varlist)(n)

Plot of objects and variables. The coordinates for the variables can
be chosen to be component loading or centroids, using keywords
LOADING and/or CENTR in parentheses following BIPLOT. When no
keyword is given, component loadings are plotted. When
NORMALIZATION = INDEPENDENT, this plot is incorrect and there-
fore not available.

Following LOADING and CENTR, a list of variables in parentheses
can be given to indicate the variables to be included in the plot. If
the variable list is omitted, a plot including all variables is pro-
duced. Following BIPLOT, a list of variables in parentheses can be
given to indicate that plots with objects labeled with the categories
of the variables should be produced (one plot for each variable). If
the variable list is omitted, a plot with objects labeled with case
numbers is produced.
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TRIPLOT(varlist(varlist))(n)

A plot of object points, component loadings for variables with an
optimal scaling level that results in line quantification (that is,
SPORD, SPNOM, ORDI, NOMI, and NUME), and centroids for variables
with optimal scaling level MNOM. Following the keyword, a list of
variables in parentheses can be given to indicate the variables to
include in the plot. If the variable list is omitted, all variables are
included. The varlist can contain a second varlist in parentheses to
indicate that triplots with objects labeled with the categories of the
variables in this variable list should be produced (one plot for each
variable). If this second variable list is omitted, a plot with objects
labeled with case numbers is produced. When NORMALIZATION =
INDEPENDENT, this plot is incorrect and therefore not available.

JOINTCAT(varlist)(n)  Joint plot of the category points for the variables in the varlist. If no
varlist is given, the category points for all variables are displayed.

PROJCENTR(varname, varlist)(n)

Plot of the centroids of a variable projected on each of the variables
in the varlist. You cannot project centroids of a variable on variables
with MNOM optimal scaling; thus, a variable that has MNOM optimal
scaling can be specified as the variable to be projected but not in the
list of variables to be projected on. When this plot is requested, a table
with the coordinates of the projected centroids is also displayed.

NONE No plots.
BIPLOT Keyword
BIPLOT takes the following keywords:
LOADING(varlist) Object points and component loadings.
CENTR(varlist) Object points and centroids.

For all of the keywords except TRANS and NONE, the user can specify an optional parameter
in order to control the global upper boundary of variable/category label lengths in the plot.
Note that this boundary is applied uniformly to all variables in the list.

The variable/category label-length parameter can take any non-negative integer less than
or equal to 20. The default length is 20. If the length is set to 0, names/values instead of
variable/value labels are displayed to indicate variables/categories. If the specified length is
greater than 20, the procedure simply resets it to 20.

‘When variables/values do not have labels, then the names/values themselves are used as
the labels.
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SAVE Subcommand

The SAVE subcommand is used to add the transformed variables (category indicators
replaced with optimal quantifications), the object scores, and the approximation to the
working data file. Excluded cases are represented by a dot (the system-missing symbol) on
every saved variable.

TRDATA Transformed variables. Missing values specified to be treated as passive are
represented by a dot.

OBJECT Object (component) scores.

APPROX Approximation for variables that do not have optimal scaling level MNOM.

e Following TRDATA, a rootname and the number of dimensions to be saved for variables
specified as MNOM can be specified in parentheses.

e For variables that are not specified as MNOM, CATPCA adds two numbers separated by the
symbol _. For variables that are specified as MNOM, CATPCA adds three numbers. The
first number uniquely identifies the source variable names and the last number uniquely
identifies the CATPCA procedures with the successfully executed SAVE subcommands.
For variables that are specified as MNOM, the middle number corresponds to the dimen-
sion number (see the next bullet for more details). Only one rootname can be specified,
and it can contain up to five characters for variables that are not specified as MNOM and
three characters for variables that are specified as MNOM (if more than one rootname is
specified, the first rootname is used; if a rootname contains more than five/three charac-
ters, the first five/three characters are used at most).

e Ifarootname is not specified for TRDATA, rootname TRA is used to automatically generate
unique variable names. The formulas are ROOTNAMEkK_n and ROOTNAMEK_m_n, where
k increments from 1 to identify the source variable names by using the source variables’
position numbers in the ANALYSIS subcommand, m increments from 1 to identify the
dimension number, and n increments from 1 to identify the CATPCA procedures with the
successfully executed SAVE subcommands for a given data file in a continuous SPSS
session. For example, with three variables specified on ANALYSIS, LEVEL = MNOM for the
second variable, and two dimensions to save, the first set of default names, if they do not
exist in the data file, would be TRA1_1, TRA2_1_1, TRA2_2_1, and TRA3_1. The next set
of default names, if they do not exist in the data file, would be TRA1_2, TRA2_1_2,
TRA2_2_2, and TRA3_2. However, if, for example, TRA1_2 already exists in the data file,
then the default names should be attempted as TRA7_3, TRA2_1_3, TRA2_2_3, and
TRA3_3. That is, the last number increments to the next available integer.

e As k and/or m and/or n increase for TRDATA, the rootname is truncated to keep variable
names within eight characters. For example, if TRANS is specified as rootname,
TRANS1_9 would be followed by TRAN7_10. Note that the truncation is done variable-
wise, not analysis-wise.

e Following OBJECT, a rootname and the number of dimensions can be specified in
parentheses to which CATPCA adds two numbers separated by the symbol _. The first
number corresponds to the dimension number. The second number uniquely identifies the
CATPCA procedures with the successfully executed SAVE subcommands (see the next
bullet for more details). Only one rootname can be specified, and it can contain up to five
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characters (if more than one rootname is specified, the first rootname is used; if a
rootname contains more than five characters, the first five characters are used at most).

e If a rootname is not specified for OBJECT, rootname OBSCO is used to automatically
generate unique variable names. The formula is ROOTNAMEm_n, where m increments
from 1 to identify the dimension number and » increments from 1 to identify the CATPCA
procedures with the successfully executed SAVE subcommands for a given data file in a
continuous SPSS session. For example, if two dimensions are specified following
OBUJECT, the first set of default names, if they do not exist in the data file, would be
OBSCO1_1 and OBSCO2_1. The next set of default names, if they do not exist in the data
file, would be OBSCO1_2 and OBSCO2_2. However, if, for example, OBSCO2_2 already
exists in the data file, then the default names should be attempted as OBSCO7_3 and
OBSCO2_3. That is, the second number increments to the next available integer.

e As m and/or n increase for OBJECT, the rootname is truncated to keep variable names
within eight characters. For example, OBSCO9_1 would be followed by OBSC10_1. The
initial character (O for the default rootnames) is required. Note that the truncation is done
variable-wise, not analysis-wise.

e Following APPROX, a rootname can be specified in parentheses, to which CATPCA adds
two numbers separated by the symbol _. The first number uniquely identifies the source
variable names, and the last number uniquely identifies the CATPCA procedures with the
successfully executed SAVE subcommands (see the next bullet for more details). Only one
rootname can be specified, and it can contain up to five characters (if more than one root-
name is specified, the first rootname is used; if a rootname contains more than five
characters, the first five characters are used at most).

e If a rootname is not specified for APPROX, rootname APP is used to automatically
generate unique variable names. The formula is ROOTNAMEk_n, where k increments from
1 to identify the source variable names by using the source variables’ position numbers in
the ANALYSIS subcommand, and » increments from 1 to identify the CATPCA procedures
with the successfully executed SAVE subcommands for a given data file in a continuous
SPSS session. For example, with three variables specified on ANALYSIS, and LEVEL =
MNOM for the second variable, the first set of default names, if they do not exist in the data
file, would be APP1_1, APP2_1, and APP3_1. The next set of default names, if they do not
exist in the data file, would be APP1_2, APP2_2, and APP3_2. However, if, for example,
APP1_2 already exists in the data file, then the default names should be attempted as
APP1_3, APP2_3, and APP3_3. That is, the last number increments to the next available
integer.

e As k and/or n increase for APPROX, the rootname is truncated to keep variable names
within eight characters. For example, if APPRO is specified as a rootname, APPRO1_9
would be followed by APPR1_10. Note that the truncation is done variable-wise, not
analysis-wise.

e Variable labels are created automatically. (They are shown in the procedure information
table, or the notes table, and can also be displayed in the Data Editor window.)

e If the number of dimensions is not specified, the SAVE subcommand saves all dimensions.
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OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data, transformed data (category
indicators replaced with optimal quantifications), the object scores, and the approximation
to an external data file. Excluded cases are represented by a dot (the system-missing symbol)
on every saved variable.

DISCRDATA(file) Discretized data.

TRDATA(file) Transformed variables. Missing values specified to be treated as
passive are represented by a dot.

OBJECT(file) Object (component) scores.

APPROX(file) Approximation for variables that do not have optimal scaling level
MNOM.

e Following the keyword, a filename enclosed by single quotation marks should be
specified. The filenames should be different for each of the keywords.

In principle, a working data file should not be replaced by this subcommand, and the asterisk
(*) file specification is not supported. This strategy also prevents the OUTFILE interference
with the SAVE subcommand.



CATREG

Overview

CATREG [VARIABLES =] varlist
/ANALYSIS
depvar [ ([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]
{n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}
{ORDI }
{NOMI }
{NUME }
WITH indvarlist [ ([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]
{n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}
{ORDI }
{NOMI }
{NUME }
[/DISCRETIZATION = [varlist [ ([{GROUPING }] [{NCAT*={7}}] [DISTR={NORMAL }])]]]
{n} {UNIFORM}
{EQINTV=d }
{RANKING }
{MULTIPLYING}
[/MISSING = [{varlist} ({LISTWISE**})]]
{ALL** } {MODEIMPU }
{EXTRACAT }
[/SUPPLEMENTARY = OBJECT (objlist)]
[/INITIAL = [{NUMERICAL**}]]
{RANDOM }
[/MAXITER = [{100%**}]]
{n }
[/CRITITER = [{.00001**}]]
{n }
[/PRINT = [R**] [COEFF**] [DESCRIP**[ (varlist)]] [HISTORY] [ANOVA**]

[CORR] [OCORR] [QUANT[ (varlist)]] [NONE]]

[/PLOT = {TRANS(varlist)[(h)]} {RESID(varlist)[(h)]}]

})1} {RES[({RES 1131

{rootname}

[/SAVE = {TRDATA[ ({TRA
{rootname}

})1} {PRED[ ({PRE
{rootname}

[/OUTFILE = {TRDATA(’filename’)} {DISCRDATA(’'filename’)}]

** Default if subcommand or keyword is omitted.

CATREG (Categorical regression with optimal scaling using alternating least squares) quan-
tifies categorical variables using optimal scaling, resulting in an optimal linear regression
equation for the transformed variables. The variables can be given mixed optimal scaling
levels and no distributional assumptions about the variables are made.

243
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Options

Transformation type. You can specify the transformation type (spline ordinal, spline nominal,
ordinal, nominal, or numerical) at which you want to analyze each variable.

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables.

Initial configuration. You can specify the kind of initial configuration through the INITIAL
subcommand.

Tuning the algorithm. You can control the values of algorithm-tuning parameters with the
MAXITER and CRITITER subcommands.

Missing data. You can specify the treatment of missing data with the MISSING subcommand.
Optional output. You can request optional output through the PRINT subcommand.

Transformation plot per variable. You can request a plot per variable of its quantification against
the category numbers.

Residual plot per variable. You can request an overlay plot per variable of the residuals and the
weighted quantification, against the category numbers.

Writing external data. You can write the transformed data (category numbers replaced with
optimal quantifications) to an outfile for use in further analyses. You can also write the
discretized data to an outfile.

Saving variables. You can save the transformed variables, the predicted values, and/or the
residuals in the working data file.

Basic Specification

Syntax Rules

The basic specification is the command CATREG with the VARIABLES and ANALYSIS
subcommands.

e The VARIABLES and ANALYSIS subcommands must always appear, and the VARIABLES
subcommand must be the first subcommand specified. The other subcommands, if
specified, can be in any order.

e Variables specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

e In the ANALYSIS subcommand, exactly one variable must be specified as a dependent
variable and at least one variable must be specified as an independent variable after the
keyword WITH.

e The word WITH is reserved as a keyword in the CATREG procedure. Thus, it may not be
a variable name in CATREG. Also, the word TO is a reserved word in SPSS.
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Limitations
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If a subcommand is specified more than once, the last one is executed but with a syntax
warning. Note this is true also for the VARIABLES and ANALYSIS subcommands.

If more than one dependent variable is specified in the ANALYSIS subcommand, CATREG
is not executed.

CATREG operates on category indicator variables. The category indicators should be pos-
itive integers. You can use the DISCRETIZATION subcommand to convert fractional-value
variables and string variables into positive integers. If DISCRETIZATION is not specified,
fractional-value variables are automatically converted into positive integers by grouping
them into seven categories with a close to normal distribution and string variables are
automatically converted into positive integers by ranking.

In addition to system missing values and user defined missing values, CATREG treats
category indicator values less than 1 as missing. If one of the values of a categorical
variable has been coded 0 or some negative value and you want to treat it as a valid
category, use the COMPUTE command to add a constant to the values of that variable such
that the lowest value will be 1. (See the SPSS Syntax Reference Guide or the SPSS Base
User’s Guide for more information on COMPUTE). You can also use the RANKING option
of the DISCRETIZATION subcommand for this purpose, except for variables you want to
treat as numerical, since the characteristic of equal intervals in the data will not be
maintained.

There must be at least three valid cases.

The number of valid cases must be greater than the number of independent variables plus 1.
The maximum number of independent variables is 200.

Split-File has no implications for CATREG.

Example
CATREG VARIABLES = TEST1 TEST3 TEST2 TEST4 TEST5 TEST6

TEST7 TO TESTY9 STATUS01 STATUSO02
/ANALYSIS TEST4 (LEVEL=NUME)
WITH TEST1 TO TEST2 (LEVEL=SPORD DEGREE=1 INKNOT=3) TEST5 TEST7
(LEVEL=SPNOM) TEST8 (LEVEL=ORDI) STATUS0l1 STATUSO02 (LEVEL=NOMI)
/DISCRETIZATION = TEST1 (GROUPING NCAT=5 DISTR=UNIFORM)
TEST5 (GROUPING) TEST7 (MULTIPLYING)

/INITIAL = RANDOM
/MAXITER = 100
/CRITITER = .000001

/MISSING = MODEIMPU

/PRINT = R COEFF DESCRIP ANOVA QUANT (TEST1 TO TEST2 STATUSO1l
STATUS02)

/PLOT = TRANS (TEST2 TO TEST7 TEST4)

/ SAVE

/OUTFILE = ’‘c:\data\qgdata.sav’.
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e VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file.

e The ANALYSIS subcommand defines variables used in the analysis. It is specified that
TEST4 is the dependent variable, with optimal scaling level numerical and that the
variables TEST1, TEST2, TEST3, TEST5, TEST7, TEST8, STATUSO1, and STATUS02 are
the independent variables to be used in the analysis. (The keyword TO refers to the order
of the variables in the VARIABLES subcommand.) The optimal scaling level for TEST7,
TEST2, and TEST3 is spline ordinal, for TEST5 and TEST7 spline nominal, for TEST8
ordinal, and for STATUSO7 and STATUS02 nominal. The splines for TEST?1 and TEST2
have degree 1 and three interior knots, the splines for TEST5 and TEST7 have degree 2
and two interior knots (default because unspecified).

e DISCRETIZATION specifies that TEST5 and TEST7, which are fractional-value variables,
are discretized: TEST5 by recoding into seven categories with a normal distribution
(default because unspecified) and TEST7 by “multiplying.” TEST1, which is a categorical
variable, is recoded into five categories with a close-to-uniform distribution.

e Because there are nominal variables, a random initial solution is requested by the INITIAL
subcommand.

e MAXITER specifies the maximum number of iterations to be 100. This is the default, so
this subcommand could be omitted here.

e CRITITER sets the convergence criterion to a value smaller than the default value.

e To include cases with missing values, the MISSING subcommand specifies that for each
variable, missing values are replaced with the most frequent category (the mode).

e PRINT specifies the correlations, the coefficients, the descriptive statistics for all vari-
ables, the ANOVA table, the category quantifications for variables TEST1, TEST2,
TEST3, STATUSO01, and STATUSO02, and the transformed data list of all cases.

e PLOT is used to request quantification plots for the variables TEST2, TEST5, TEST7, and
TESTA4.

e The SAVE subcommand adds the transformed variables to the working data file. The
names of these new variables are TRANS1_1, ..., TRANS9_1.

e The OUTFILE subcommand writes the transformed data to a data file called gdata.sav in
the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATREG procedure.

e The VARIABLES subcommand is required and precedes all other subcommands. The
actual keyword VARIABLES can be omitted. (Note that the equals sign is always optional
in SPSS syntax.)

e The keyword TO on the VARIABLES subcommand refers to the order of variables in the
working data file. (Note that this behavior of TO is different from that in the indvarlist on
the ANALYSIS subcommand.)
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ANALYSIS specifies the dependent variable and the independent variables following the

keyword WITH.

e All the variables on ANALYSIS must be specified on the VARIABLES subcommand.

e The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

e The first variable list contains exactly one variable as the dependent variable, while the
second variable list following WITH contains at least one variable as an independent

variable. Each variable may have at most one keyword in parentheses indicating the
transformation type of the variable.

e The keyword TO in the independent variable list honors the order of variables on the
VARIABLES subcommand.

e Optimal scaling levels are indicated by the keyword LEVEL in parentheses following the
variable or variable list.

LEVEL

LEVEL Keyword

Specifies the optimal scaling level.

The following keywords are used to indicate the optimal scaling level:

SPORD

SPNOM

ORDI

NOMI

Spline ordinal (monotonic). This is the default for a variable listed
without any optimal scaling level, for example, one without LEVEL in
the parentheses after it or with LEVEL without a specification. Catego-
ries are treated as ordered. The order of the categories of the observed
variable is preserved in the optimally scaled variable. Categories will
be on a straight line through the origin. The resulting transformation is
a smooth nondecreasing piecewise polynomial of the chosen degree.
The pieces are specified by the number and the placement of the
interior knots.

Spline nominal (non-monotonic). Categories are treated as unordered.
Objects in the same category obtain the same quantification. Catego-
ries will be on a straight line through the origin. The resulting transfor-
mation is a smooth piecewise polynomial of the chosen degree. The
pieces are specified by the number and the placement of the interior
knots.

Ordinal. Categories are treated as ordered. The order of the categories
of the observed variable is preserved in the optimally scaled variable.
Categories will be on a straight line through the origin. The resulting
transformation fits better than SPORD transformation, but is less
smooth.

Nominal. Categories are treated as unordered. Objects in the same
category obtain the same quantification. Categories will be on a
straight line through the origin. The resulting transformation fits better
than SPNOM transformation, but is less smooth.
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NUME Numerical. Categories are treated as equally spaced (interval level).
The order of the categories and the differences between category num-
bers of the observed variables are preserved in the optimally scaled
variable. Categories will be on a straight line through the origin. When
all variables are scaled at the numerical level, the CATREG analysis is
analogous to standard multiple regression analysis.

SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM :

DEGREE The degree of the polynomial. If DEGREE is not specified the degree
is assumed to be 2.

INKNOT The number of the interior knots. If INKNOT is not specified the num-
ber of interior knots is assumed to be 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables that you want to discretize. Also, you
can use DISCRETIZATION for ranking or for two ways of recoding categorical variables.

e A string variable’s values are always converted into positive integers by assigning
category indicators according to the ascending alphanumeric order. DISCRETIZATION for
string variables applies to these integers.

e When the DISCRETIZATION subcommand is omitted, or when the DISCRETIZATION sub-
command is used without a varlist, fractional-value variables are converted into positive
integers by grouping them into seven categories (or into the number of distinct values of
the variable if this number is less than 7) with a close to normal distribution.

e When no specification is given for variables in a varlist following DISCRETIZATION, these
variables are grouped into seven categories with a close-to-normal distribution.

e In CATREG, a system-missing value, user-defined missing values, and values less than 1
are considered to be missing values (see next section). However, in discretizing a
variable, values less than 1 are considered to be valid values, and are thus included in the
discretization process. System-missing values and user-defined missing values are

excluded.
GROUPING Recode into the specified number of categories.
RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on
the variable.
MULTIPLYING Multiplying the standardized values (z-scores) of a fractional-value

variable by 10, rounding, and adding a value such that the lowest
value is 1.
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NCAT

EQINTV

DISTR Keyword
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Recode into ncat categories. When NCAT is not specified, the number of
categories is set to 7 (or the number of distinct values of the variable if this
number is less than 7). The valid range is from 2 to 36. You may either
specify a number of categories or use the keyword DISTR.

Recode intervals of equal size into categories. The interval size must be
specified (there is no default value). The resulting number of categories
depends on the interval size.

DISTR has the following keywords:

NORMAL
UNIFORM

MISSING Subcommand

Normal distribution. This is the default when DISTR is not specified.

Uniform distribution.

In CATREG, we consider a system missing value, user defined missing values, and values less
than 1 as missing values. However, in discretizing a variable (see previous section), values
less than 1 are considered as valid values. The MISSING subcommand allows you to indicate
how to handle missing values for each variable.

LISTWISE

MODEIMPU

EXTRACAT

Exclude cases with missing values on the specified variable(s). The
cases used in the analysis are cases without missing values on the
variable(s) specified. This is the default applied to all variables, when
the MISSING subcommand is omitted or is specified without variable
names or keywords. Also, any variable which is not included in the
subcommand gets this specification.

Impute missing value with mode. All cases are included and the impu-
tations are treated as valid observations for a given variable. When
there are multiple modes, the smallest mode is used.

Impute missing values on a variable with an extra category indicator.
This implies that objects with a missing value are considered to belong
to the same (extra) category. This category is treated as nominal,
regardless of the optimal scaling level of the variable.

e The ALL keyword may be used to indicate all variables. If it is used, it must be the only
variable specification.

¢ A mode or extra-category imputation is done before listwise deletion.
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SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects that you want to treat as supple-
mentary. You cannot weight supplementary objects (specified weights are ignored).

OBJECT Supplementary objects. Objects that you want to treat as supplemen-
tary are indicated with an object number list in parentheses following
OBUJECT. The keyword TO is allowed, for example, OBJECT(1 TO 1 3
570 9).

INITIAL Subcommand

INITIAL specifies the method used to compute the initial value/configuration.
e The specification on INITIAL is keyword NUMERICAL or RANDOM. If INITIAL is not
specified, NUMERICAL is the default.

NUMERICAL Treat all variables as numerical. This is usually best to use when there
are only numerical and/or ordinal variables.

RANDOM Provide a random initial value. This should be used only when there
is at least one nominal variable.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations CATREG can go through in its com-
putations. Note that the output starts from the iteration number 0, which is the initial value
before any iteration, when INITIAL = NUMERICAL is in effect.

e If MAXITER is not specified, CATREG will iterate up to 100 times.

e The specification on MAXITER is a positive integer indicating the maximum number of
iterations. There is no uniquely predetermined (hard coded) maximum for the value that
can be used.

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATREG stops iterating if the difference
in fit between the last two iterations is less than the CRITITER value.

e If CRITITER is not specified, the convergence value is 0.00001.

e The specification on CRITITER is any value less than or equal to 0.1 and greater than or
equal to .000001. (Values less than the lower bound might seriously affect performance.
Therefore, they are not supported.)
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The PRINT subcommand controls the display of output. The output of the CATREG procedure
is always based on the transformed variables. However, the correlations of the original pre-
dictor variables can be requested as well by the keyword OCORR. The default keywords are
R, COEFF, DESCRIP, and ANOVA. That is, the four keywords are in effect when the PRINT
subcommand is omitted or when the PRINT subcommand is given without any keyword. If a
keyword is duplicated or it encounters a contradicting keyword, such as /PRINT = R R NONE,
then the last one silently becomes effective.

R

COEFF

DESCRIP(varlist)

HISTORY

ANOVA

CORR
OCORR
QUANT (varlist)

Multiple R. Includes R?, adjusted R?, and adjusted R? taking the
optimal scaling into account.

Standardized regression coefficients (beta). This option gives three
tables: a Coefficients table that includes betas, standard error of the
betas, t values, and significance; a Coefficients-Optimal Scaling
table, with the standard error of the betas taking the optimal scaling
degrees of freedom into account; and a table with the zero-order, part,
and partial correlation, Pratt’s relative importance measure for the
transformed predictors, and the tolerance before and after transforma-
tion. If the tolerance for a transformed predictor is lower than the de-
fault tolerance value in the SPSS Regression procedure (0.0001), but
higher than 10E-12, this is reported in an annotation. If the tolerance
is lower than 10E-12, then the COEFF computation for this variable
is not done and this is reported in an annotation. Note that the regres-
sion model includes the intercept coefficient but that its estimate does
not exist because the coefficients are standardized.

Descriptive statistics (frequencies, missing values, and mode). The
variables in the varlist must be specified on the VARIABLES subcom-
mand, but need not appear on the ANALYSIS subcommand. If DESCRIP
is not followed by a varlist, Descriptives tables are displayed for all of
the variables in the variable list on the ANALYSIS subcommand.

History of iterations. For each iteration, including the starting values
for the algorithm, the multiple R and the regression error (square root
of (1-multiple RZ)) are shown. The increase in multiple R is listed
from the first iteration.

Analysis-of-variance tables. This option includes regression and
residual sums of squares, mean squares and F. This options gives two
ANOVA tables: one with degrees of freedom for the regression equal
to the number of predictor variables and one with degrees of freedom
for the regression taking the optimal scaling into account.

Correlations of the transformed predictors.
Correlations of the original predictors.

Category quantifications. Any variable in the ANALYSIS subcommand
may be specified in parentheses after QUANT. If QUANT is not fol-
lowed by a varlist, Quantification tables are displayed for all variables
in the variable list on the ANALYSIS subcommand.
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NONE No PRINT output is shown. This is to suppress the default PRINT
output.

e The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS sub-
command, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and
/ANALYSIS is v2 v1 v4, then /PRINT QUANT(v1 TO v4) will give two quantification plots,
one for v1 and one for v4. (/PRINT QUANT(v1 TO v4 v2 v3 v5) will give quantification tables
for v1, v2, v3, v4, and v5.)

PLOT Subcommand

The PLOT subcommand controls the display of plots.

e In this subcommand, if no plot keyword is given, then no plot is created. Further, if the
variable list following the plot keyword is empty, then no plot is created, either.

e All the variables to be plotted must be specified in the ANALYSIS subcommand. Further,
for the residual plots, the variables must be independent variables.

TRANS(varlist)(l) Transformation plots (optimal category quantifications against cate-
gory indicators). A list of variables must come from the ANALYSIS
variable list and must be given in parentheses following the keyword.
Further, the user can specify an optional parameter I in parentheses
after the variable list in order to control the global upper boundary of
category label lengths in the plot. Note that this boundary is applied
uniformly to all transformation plots.

RESID(varlist)(1) Residual plots (residuals when the dependent variable is predicted
from all predictor variables in the analysis except the predictor
variable in varlist, against category indicators, and the optimal
category quantifications multiplied with Beta against category
indicators). A list of variables must come from the ANALYSIS variable
list’s independent variables and must be given in parentheses follow-
ing the keyword. Further, the user can specify an optional parameter 1
in parentheses after the variable list in order to control the global upper
boundary of category label lengths in the plot. Note that this boundary
is applied uniformly to all residual plots.

e The category label length parameter (1) can take any non-negative integer less than or
equal to 20. If | = 0, values instead of value labels are displayed to indicate the categories
on the x axis in the plot. If | is not specified, CATREG assumes that each value label at its
full length is displayed as a plot’s category label, but currently LINE CHART in GRAPH
limit them to 20. Thus, it is equivalent to (I = 20). (Note that the VALUE LABELS command
allows up to 60 characters.) If | is an integer larger than 20, then we reset it to 20 and issue
a warning saying | must be a non-negative integer less than or equal to 20.

e If a positive value of | is given, but if some or all of the values do not have value labels,
then for those values, the values themselves are used as the category labels, and they obey
the label length constraint.
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e The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS
subcommand, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and
/ANALYSIS is v2 v1 v4, then /PLOT TRANS(v1 TO v4) will give two transformation plots,
one for v1 and for v4. (/PLOT TRANS(v1 TO v4 v2 v3 v5) will give transformation plots for
v1, v2, v3, v4, and v5.)

SAVE Subcommand

The SAVE subcommand is used to add the transformed variables (category indicators
replaced with optimal quantifications), the predicted values, and the residuals to the working
data file.

Excluded cases are represented by a dot (the sysmis symbol) on every saved variable.

TRDATA Transformed variables.
PRED Predicted values.
RES Residuals.

e A variable rootname can be specified with each of the keywords. Only one rootname can
be specified with each keyword, and it can contain up to five characters (if more than one
rootname is specified with a keyword, the first rootname is used; if a rootname contains
more than five characters, the first five characters are used at most). If a rootname is not
specified, the default rootnames (TRA, PRE, and RES) are used.

e CATREG adds two numbers separated by an underscore (_) to the rootname. The formula
is ROOTNAMEK_n where k increments from 1 to identify the source variable names by us-
ing the source variables’ position numbers in the ANALYSIS subcommand (that is, the de-
pendent variable has the position number 1, and the independent variables have the
position numbers 2, 3, ... as they are listed), and n increments from 1 to identify the
CATREG procedures with the successfully executed SAVE subcommands for a given data
file in a continuous SPSS session. For example, with two predictor variables specified on
ANALYSIS, the first set of default names for the transformed data, if they do not exist in
the data file, would be TRA7_1, for the dependent variable, and TRA2_1, TRA3_1 for the
predictor variables. The next set of default names, if they do not exist in the data file,
would be TRA1_2, TRA2_2, TRA3_2. However, if, for example, TRA1_2 already exists in
the data file, then the default names should be attempted as TRA1_3, TRA2_3, TRA3 3—
that is, the last number increments to the next available integer.

e As k and/or n increase, the rootname is truncated to keep variable names within eight
characters. For example, if TRANS is specified as rootname, TRANS71_9 would be fol-
lowed by TRAN1_10. The initial character (T in this example) is required. Note that the
truncation is done variable-wise, not analysis-wise.

e Variable labels are created automatically. (They are shown in the Procedure Information
Table (the Notes table) and can also be displayed in the Data Editor window.)
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OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data and/or the transformed data
(category indicators replaced with optimal quantifications) to an external data file. Excluded
cases are represented by a dot (the sysmis symbol) on every saved variable.

DISCRDATA(filename’) Discretized data.

TRDATA(filename’) Transformed variables.

e Following the keyword, a filename enclosed by single quotation marks should be
specified. The filenames should be different for the each of the keywords.

e A working data file, in principle, should not be replaced by this subcommand, and the
asterisk (*) file specification is not supported. This strategy also prevents the OUTFILE
interference with the SAVE subcommand.



CORRESPONDENCE

Overview

CORRESPONDENCE
/TABLE = {rowvar (min, max) BY colvar (min, max)}
{ALL (# of rows, # of columns ) }
[/SUPPLEMENTARY = [rowvar (valuelist)] [colvar (valuelist)]
[/EQUAL = [rowvar (valuelist)... (valuelist)
[colvar (valuelist)... (valuelist)]]

[/MEASURE = {CHISQ**}
{EUCLID }

[/STANDARDIZE = {RMEAN 31

{CMEAN }
{RCMEAN* * }
{RSUM }
{CsuM }

[/DIMENSION = {2** }]
{value}

[/NORMALIZATION = {SYMMETRICAL**}]

{PRINCIPAL }
{RPRINCIPAL }
{CPRINCIPAL }
{value }
[/PRINT = [TABLE**] [RPROF] [CPROF] [RPOINTS**] [CPOINTS**]
[RCONF] [CCONF] [PERMUTATION/[ (n)]] [DEFAULT] [NONE]]

[/PLOT = [NDIM({1** ,2** })]
{value,value}
{ALL ,MAX }
[RPOINTS[ (n)]] [CPOINTS[(n)] [TRROWSI (n)]
[TRCOLUMNS[ (n)]] [BIPLOT**[(n)]] [NONE]]

[/OUTFILE = {SCORE (filename) ]

{ VARIANCE (filename) }
{SCORE (filename) VARIANCE (filename) }

**Default if subcommand or keyword is omitted.

CORRESPONDENCE displays the relationships between rows and columns of a two-way
table graphically by a scatterplot matrix. It computes the row and column scores and sta-
tistics and produces plots based on the scores. Also, confidence statistics are computed.

255
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Options

Number of dimensions. You can specify how many dimensions CORRESPONDENCE should
compute.

Supplementary points. You can specify supplementary rows and columns.

Equality restrictions. You can restrict rows and columns to have equal scores.
Measure. You can specify the distance measure to be the chi-square of Euclidean.
Standardization. You can specify one of five different standardization methods.

Method of normalization. You can specify one of five different methods for normalizing the
row and column scores.

Confidence statistics. You can request computation of confidence statistics (standard devia-
tions and correlations) for row and column scores. For singular values, confidence statistics
are always computed.

Data input. You can analyze individual casewise data, aggregated data, or table data.

Display output. You can control which statistics are displayed and plotted.

Writing matrices. You can write a matrix data file containing the row and column scores, and
amatrix data file containing confidence statistics (variances and covariances) for the singular
values, row scores, and column scores.

Basic Specification

e The basic specification is CORRESPONDENCE and the TABLE subcommand. By default,
CORRESPONDENCE computes a two-dimensional solution and displays the correspon-
dence table, the summary table, an overview of the row and column points, and a scatterplot
matrix of biplots of the row and column scores for the first two dimensions.

Subcommand Order

Syntax Rules

e The TABLE subcommand must appear first.
e All other subcommands can appear in any order.

e Only one keyword can be specified on the MEASURE subcommand.

e Only one keyword can be specified on the STANDARDIZE subcommand.

e Only one keyword can be specified on the NORMALIZATION subcommand.
e Only one parameter can be specified on the DIMENSION subcommand.
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Limitations

Example
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e If a subcommand is specified more than once, only the last occurrence is executed.

e The table input data and the aggregated input data cannot contain negative values.
CORRESPONDENCE will treat such values as 0.

e Rows and columns that are specified as supplementary cannot be equalized.
e The maximum number of supplementary points for a variable is 200.
e The maximum number of equalities for a variable is 200.

CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/PRINT=RPOINTS CPOINTS
/PLOT=RPOINTS CPOINTS.

e Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has
values ranging from 1 to 4 and SES has values ranging from 1 to 6.

e The summary table and overview tables of the row and column points are displayed.

e Two scatterplot matrices are produced. The first one plots the first two dimensions of row
scores and the second one plots the first two dimensions of column scores.

TABLE Subcommand

Casewise Data

TABLE specifies the row and column variables along with their integer value ranges. The two
variables are separated by the keyword BY.

e The TABLE subcommand is required.

e Each variable is followed by an integer value range in parentheses. The value range con-
sists of the variable’s minimum value and its maximum value.

e Values outside of the specified range are not included in the analysis.

e Values do not have to be sequential. Empty categories yield a zero in the input table and
do not affect the statistics for other categories.
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Table Data

Example

DATA LIST FREE/VAR1 VAR2.
BEGIN DATA
1

abkwooaoakxbWwow
DWWWNN

3
END DATA.
CORRESPONDENCE TABLE=VAR1(3,6) BY VAR2(1,3).

e DATA LIST defines two variables, VART and VAR2.
e VART1 has three levels, coded 3, 4, and 6. VARZ2 also has three levels, coded 1, 2, and 3.

e Since arange of (3,6) is specified for VAR, CORRESPONDENCE defines four categories,
coded 3, 4, 5, and 6. The empty category, 5, for which there is no data, receives system-
missing values for all statistics and does not affect the analysis.

e The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.

e The columns of the input table must be specified as variables on the DATA LIST command.
Only columns are defined, not rows.

e ALL is followed by the number of rows in the table, a comma, and the number of columns
in the table, all in parentheses.

e The row variable is named ROW, and the column variable is named COLUMN.

e The number of rows and columns specified can be smaller than the actual number of rows
and columns if you want to analyze only a subset of the table.

e The variables (columns of the table) are treated as the column categories, and the cases
(rows of the table) are treated as the row categories.

e Row categories can be assigned values (category codes) when you specify TABLE=ALL by
the optional variable ROWCAT._. This variable must be defined as a numeric variable with
unique values corresponding to the row categories. If ROWCAT._ is not present, the row
index numbers are used as row category values.

Example

DATA LIST /ROWCAT_ 1 COLl1 3-4 COL2 6-7 COL3 9-10.

BEGIN DATA

1 50 19 26

2 16 40 34

3 12 35 65

4 11 20 58

END DATA.

VALUE LABELS ROWCAT_ 1 ‘ROW1’ 2 ‘ROW2’ 3 ‘ROW3’ 4 ‘ROW4’.
CORRESPONDENCE TABLE=ALL(4,3).

e DATA LIST defines the row category naming variable ROWCAT_ and the three columns of
the table as the variables.
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e The TABLE=ALL specification indicates that the data are the cells of a table. The (4,3)
specification indicates that there are four rows and three columns.

e The column variable is named COLUMN with categories labeled COLI, COL2, and COL3.

e The row variable is named ROW with categories labeled ROWI, ROW2, ROW3, and
ROWA4.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want CORRESPONDENCE to compute.

e If you do not specify the DIMENSION subcommand, CORRESPONDENCE computes two
dimensions.

e DIMENSION is followed by a positive integer indicating the number of dimensions. If this
parameter is omitted, a value of 2 is assumed.

e In general, you should choose as few dimensions as needed to explain most of the
variation. The minimum number of dimensions that can be specified is 1. The maximum
number of dimensions that can be specified equals the minimum of the number of active
rows and the number of active columns, minus 1. An active row or column is a nonsupple-
mentary row or column that is used in the analysis. For example, in a table where the num-
ber of rows is 5 (2 of which are supplementary) and the number of columns is 4, the number
of active rows (3) is smaller than the number of active columns (4). Thus, the maximum
number of dimensions that can be specified is (5—2) -1, or 2. Rows and columns that
are restricted to have equal scores count as 1 toward the number of active rows or columns.
For example, in a table with five rows and four columns, where two columns are restricted
to have equal scores, the number of active rows is 5 and the number of active columns is
(4 — 1), or 3. The maximum number of dimensions that can be specified is (3 — 1), or 2.
Empty rows and columns (rows or columns with no data, all zeros, or all missing data) are
not counted toward the number of rows and columns.

¢ If more than the maximum allowed number of dimensions is specified, CORRESPONDENCE
reduces the number of dimensions to the maximum.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the rows and columns that you want to treat

as supplementary (also called passive or illustrative).

e For casewise data, the specification on SUPPLEMENTARY is a variable name, followed by
a value list in parentheses. The values must be in the value range specified on the TABLE
subcommand for the row or column variable.

e For table data, the specification on SUPPLEMENTARY is ROW and/or COLUMN, followed
by a value list in parentheses. The values represent the row or column indices of the table
input data.

e The maximum number of supplementary rows or columns is the number of active rows
or columns minus 2.

e Supplementary rows and columns cannot be equalized.
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Example

CORRESPONDENCE TABLE=MENTAL (1,8) BY SES(1,6)
/SUPPLEMENTARY MENTAL(3) SES(2,6).

e SUPPLEMENTARY specifies the third level of MENTAL and the second and sixth levels of
SES to be supplementary.

Example

CORRESPONDENCE TABLE=ALL(8,6)
/SUPPLEMENTARY ROW(3) COLUMN(2,6) .

e SUPPLEMENTARY specifies the third level of the row variable and the second and sixth
levels of the column variable to be supplementary.

EQUAL Subcommand

The EQUAL subcommand specifies the rows or columns that you want to restrict to have
equal scores.

e For casewise data, the specification on EQUAL is a variable name, followed by a list of at
least two values in parentheses. The values must be in the value range specified on the
TABLE subcommand for the row or column variable.

e For table data, the specification on EQUAL is ROW and/or COLUMN, followed by a value
list in parentheses. The values represent the row or column indices of the table input data.

e Rows or columns that are restricted to have equal scores cannot be supplementary.

e The maximum number of equal rows or columns is the number of active rows or columns
minus 1.

Example

CORRESPONDENCE TABLE=MENTAL (1,8) BY SES(1,6)
/EQUAL MENTAL(1,2) (6,7) SES(1,2,3).

e EQUAL specifies the first and second level of MENTAL, the sixth and seventh level of
MENTAL, and the first, second, and third levels of SES to have equal scores.

MEASURE Subcommand

The MEASURE subcommand specifies the measure of distance between the row and column
profiles.

e Only one keyword can be used in a given analysis.
The following keywords are available:

CHISQ Chi-square distance. This is the weighted distance, where the weight is the
mass of the rows or columns. This is the default specification for MEASURE
and is the necessary specification for standard correspondence analysis.

EUCLID Euclidean distance. The distance is the square root of the sum of squared dif-
ferences between the values for two rows or columns.
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STANDARDIZE Subcommand

When MEASURE=EUCLID, the STANDARDIZE subcommand specifies the method of
standardization.

e Only one keyword can be used.

e If MEASURE is CHISQ, the standardization is automatically set to RCMEAN and
corresponds to standard correspondence analysis.

The following keywords are available:

RMEAN The row means are removed.

CMEAN The column means are removed.

RCMEAN Both the row and column means are removed. This is the default specification.

RSUM First the row totals are equalized and then the row means are removed.

CSUM First the column totals are equalized and then the column means are
removed.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row
and column scores. Only the scores and confidence statistics are affected; contributions and
profiles are not changed.

The following keywords are available:

SYMMETRICAL  For each dimension, rows are the weighted average of columns divided by
the matching singular value, and columns are the weighted average of rows
divided by the matching singular value. This is the default if the
NORMALIZATION subcommand is not specified. Use this normalization
method if you are primarily interested in differences or similarities between
rows and columns.

PRINCIPAL Distances between row points and column points are approximations of chi-
square distances or of Euclidean distances (depending on MEASURE). The
distances represent the distance between the row or column and its corre-
sponding average row or column profile. Use this normalization method if
you want to examine both differences between categories of the row
variable and differences between categories of the column variable (but not
differences between variables).

RPRINCIPAL Distances between row points are approximations of chi-square distances or
of Euclidean distances (depending on MEASURE). This method maximizes
distances between row points. The row points are weighted averages of the
column points. This is useful when you are primarily interested in differences
or similarities between categories of the row variable.
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CPRINCIPAL Distances between column points are approximations of chi-square
distances or of Euclidean distances (depending on MEASURE). This method
maximizes distances between column points. The column points are weighted
averages of the row points. This is useful when you are primarily interested
in differences or similarities between categories of the column variable.

The fifth method allows the user to specify any value in the range —1 to +1, inclusive. A value
of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to the SYMMETRICAL method,
and a value of —1 is equal to the CPRINCIPAL method. By specifying a value between —1 and
1, the user can spread the inertia over both row and column scores to varying degrees. This
method is useful for making tailor-made biplots.

PRINT Subcommand

Use PRINT to control which of several correspondence statistics are displayed. The summary
table (singular values, inertia, proportion of inertia accounted for, cumulative proportion of
inertia accounted for, and confidence statistics for the maximum number of dimensions) is
always produced. If PRINT is not specified, the input table, the summary table, the overview
of row points table, and the overview of column points table are displayed.

The following keywords are available:

TABLE A crosstabulation of the input variables showing row and column
marginals.
RPROFILES The row profiles. PRINT=RPROFILES is analogous to the CELLS=ROW

subcommand in CROSSTABS.

CPROFILES The column profiles. PRINT=CPROFILES is analogous to the CELLS=
COLUMN subcommand in CROSSTABS.

RPOINTS Overview of row points (mass, scores, inertia, contribution of the
points to the inertia of the dimension, and the contribution of the
dimensions to the inertia of the points).

CPOINTS Overview of column points (mass, scores, inertia, contribution of the
points to the inertia of the dimension, and the contribution of the
dimensions to the inertia of the points).

RCONF Confidence statistics (standard deviations and correlations) for the
active row points.

CCONF Confidence statistics (standard deviations and correlations) for the
active column points.

PERMUTATION(n) The original table permuted according to the scores of the rows and
columns. PERMUTATION can be followed by a number in parentheses
indicating the maximum number of dimensions for which you want
permuted tables. The default number of dimensions is 1.
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NONE No output other than the SUMMARY table.

DEFAULT TABLE, RPOINTS, CPOINTS, and the SUMMARY tables. These statistics

are displayed if you omit the PRINT subcommand.

PLOT Subcommand

Use PLOT to produce plots of the row scores, column scores, row and column scores, trans-
formations of the row scores, and transformations of the column scores. If PLOT is not
specified or is specified without keywords, a biplot is produced.

The following keywords are available:

TRROWS(n) Line chart of transformations of the row category values into row
scores.

TRCOLUMNS(n) Line chart of transformations of the column category values into
column scores.

RPOINTS(n) Scatterplot matrix of row scores.

CPOINTS(n) Scatterplot matrix of column scores.

BIPLOT(n) Biplot matrix of the row and column scores. This is the default plot.

This plot is not available when NORMALIZATION=PRINCIPAL. From
the Chart Editor, you can create a two-dimensional biplot of any
pair of dimensions in the biplot matrix. You can also create a three-
dimensional biplot of any three dimensions in the biplot matrix.

NONE No plots.

All keywords can be followed by an integer value in parentheses to indicate how many
characters of the value label are to be used in the plot. The value can range from 0 to 20.
Spaces between words count as characters. A value of O corresponds to using the values
instead of the value labels.

If a label is missing for a value, the actual value is used. However, the length of the value
is truncated in accordance with the length parameter. For example, a category coded as
100 with no value label appears as 10 if the length parameter is 2.

TRROWS and TRCOLUMNS produce line charts. RPOINTS and CPOINTS produce scatter-
plot matrices. BIPLOT produces a biplot matrix. For line charts, the value labels are used
to label the category axis. For scatterplot matrices and biplot matrices, the value labels are
used to label the points in the plot.

In addition to the plot keywords, the following can be specified:

NDIM Dimensions to be plotted. NDIM is followed by a pair of values in parentheses. If

NDIM is not specified, NDIM(1,2) is assumed.

The first value must be any integer from 1 to the number of dimensions minus 1.
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e The second value can be any integer from 2 to the number of dimensions. The second value
must exceed the first. Alternatively, the keyword MAX can be used instead of a value to
indicate the highest dimension of the solution.

e For TRROWS and TRCOLUMNS, the first and second values indicate the range of dimen-
sions for which the plots are created.

e For RPOINTS, CPOINTS, and BIPLOT, the first and second values indicate the range of di-
mensions included in the scatterplot matrix or biplot matrix.

Example

CORRESPONDENCE TABLE=MENTAL (1,4) BY SES(1,6)
/PLOT NDIM(1,3) BIPLOT(5).

e BIPLOT and NDIM(1,3) request a biplot matrix of the first three dimensions.

e The 5 following BIPLOT indicates that only the first five characters of each label are to be
shown in the biplot matrix.

Example

CORRESPONDENCE TABLE=MENTAL (1,4) BY SES(1,6)
/DIMENSION = 3
/PLOT NDIM(1,MAX) TRROWS.

e Three transformation plots of row categories into row points are produced, one for each
dimension from 1 to the highest dimension of the analysis (in this case, 3).

OUTFILE Subcommand

Use OUTFILE to write row and column scores and/or confidence statistics (variances and co-
variances) for the singular values and row and column scores to matrix data files.

OUTFILE must be followed by one or both of the following keywords:
SCORE (filename) Write row and column scores to a matrix data file.
VARIANCE (filename) ~ Write variances and covariances to a matrix data file.

* You must specify the name of an external file.

e If you specify both SCORE and VARIANCE on the same OUTFILE subcommand, you must
specify two different filenames.

e For VARIANCE, supplementary and equality constrained rows and columns are not pro-
duced in the matrix file.

The variables in the SCORE matrix data file and their values are:

ROWTYPE_ String variable containing the value ROW for all of the rows and
COLUMN for all of the columns.

LEVEL_ String variable containing the values (or value labels, if present) of
each original variable.

VARNAME_ String variable containing the original variable names.
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Numerical variables containing the row and column scores for each
dimension. Each variable is labeled DIMn, where n represents the
dimension number.

The variables in the VARIANCE matrix data file and their values are:

ROWTYPE_

SCORE_

LEVEL_

VARNAME_
DIM1...DIMn

String variable containing the value COV for all of the cases in the file.

String variable containing the value SINGULAR, the row variable’s
name (or label), and the column variable’s name (or label).

String variable containing the row variable’s values (or labels), the
column variable’s values (or labels), and a blank value for score_ =
SINGULAR.

String variable containing the dimension number.

Numerical variables containing the variances and covariances for
each dimension. Each variable is named DIMn, where n represents the
dimension number.

See the SPSS Syntax Reference Guide for more information on matrix data files.

Analyzing Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are
available but the original raw data are not, you can use the WEIGHT command before

CORRESPONDENCE.

Example

To analyze a 3 X 3 table such as the one shown in Table 1, you could use these commands:
DATA LIST FREE/ BIRTHORD ANXIETY COUNT.

BEGIN DATA

1

WWWNONNR R
PWNhEFPW

3
END

WEIGHT BY COUNT.

48

DATA.

CORRESPONDENCE TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

e The WEIGHT command weights each case by the value of COUNT, as if there are 48 sub-
jects with BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2,

and so on.

e CORRESPONDENCE can then be used to analyze the data.

e If any of the table cell values equals 0, the WEIGHT command issues a warning, but the
CORRESPONDENCE analysis is done correctly.
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e The table cell values (the WEIGHT values) cannot be negative.

Tablel 3x3table

Anxiety
High | Med | Low
First 48 27 22

Birth order | Second 33 20 39
Other 29 42 47
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HOMALS VARIABLES=varlist (max)
[/ANALYSIS=varlist]
[ /NOBSERVATIONS=value]

[/DIMENSION={2** }]
{value}

[/MAXITER={100**}
{value}

[/CONVERGENCE={.00001**}]
{value }

[/PRINT=[DEFAULT**] [FREQ**] [EIGEN**] [DISCRIM**]
[QUANT**] [OBJECT] [HISTORY] [ALL] [NONE]]

[/PLOT=[NDIM= ({1, 2 }**)]
{value, value}
{ALL, MAX
[QUANT** [ (varlist)][(n)]] [OBJECT**[ (varlist)][(n)]
[DEFAULT** [ (n)]] [DISCRIM[(n)]] [ALL[(n)]] [NONE]]
[/SAVE=[rootname] [ (value)l]

[ /MATRIX=0UT ({* 11
{file}

**Default if subcommand or keyword is omitted.

Overview

HOMALS (homogeneity analysis by means of alternating /east squares) estimates category
quantifications, object scores, and other associated statistics that separate categories (levels)
of nominal variables as much as possible and divide cases into homogeneous subgroups.

Options

Data and variable selection. You can use a subset of the variables in the analysis and restrict
the analysis to the first n observations.

Number of dimensions. You can specify how many dimensions HOMALS should compute.

Iterations and convergence. You can specify the maximum number of iterations and the value
of a convergence criterion.

Display output. The output can include all available statistics, just the default frequencies,
eigenvalues, discrimination measures and category quantifications, or just the specific sta-
tistics you request. You can also control which statistics are plotted and specify the number
of characters used in plot labels.

Saving scores. You can save object scores in the working data file.

267
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Writing matrices. You can write a matrix data file containing category quantifications for use
in further analyses.

Basic Specification

e The basic specification is HOMALS and the VARIABLES subcommand. By default,
HOMALS analyzes all of the variables listed for all cases and computes two solutions.
Frequencies, eigenvalues, discrimination measures, and category quantifications are
displayed and category quantifications and object scores are plotted.

Subcommand Order

e Subcommands can appear in any order.

Syntax Rules

e If ANALYSIS is specified more than once, HOMALS is not executed. For all other subcom-
mands, if a subcommand is specified more than once, only the last occurrence is executed.

Operations

e HOMALS treats every value in the range 1 to the maximum value specified on VARIABLES
as a valid category. If the data are not sequential, the empty categories (categories with
no valid data) are assigned zeros for all statistics. You may want to use RECODE or
AUTORECODE before HOMALS to get rid of these empty categories and avoid the
unnecessary output (see the SPSS Syntax Reference Guide for more information on
AUTORECODE and RECODE).

Limitations

e String variables are not allowed; use AUTORECODE to recode string variables into numeric
variables.

e The data (category values) must be positive integers. Zeros and negative values are treated
as system-missing, which means that they are excluded from the analysis. Fractional
values are truncated after the decimal and are included in the analysis. If one of the levels
of a variable has been coded 0O or a negative value and you want to treat it as a valid cate-
gory, use the AUTORECODE or RECODE command to recode the values of that variable.

e HOMALS ignores user-missing value specifications. Positive user-missing values less
than the maximum value specified on the VARIABLES subcommand are treated as valid
category values and are included in the analysis. If you do not want the category included,
use COMPUTE or RECODE to change the value to something outside of the valid range.
Values outside of the range (less than 1 or greater than the maximum value) are treated
as system-missing and are excluded from the analysis.
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Example

HOMALS VARIABLES=ACOLA(2) BCOLA(2) CCOLA(2) DCOLA(2)
/PRINT=FREQ EIGEN QUANT OBJECT.

e The four variables are analyzed using all available observations. Each variable has two
categories, 1 and 2.

e The PRINT subcommand lists the frequencies, eigenvalues, category quantifications, and
object scores.

e By default, plots of the category quantifications and the object scores are produced.

VARIABLES Subcommand

VARIABLES specifies the variables that will be used in the analysis.
e The VARIABLES subcommand is required. The actual word VARIABLES can be omitted.

e After each variable or variable list, specify in parentheses the maximum number of cate-
gories (levels) of the variables.

¢ The number specified in parentheses indicates the number of categories and the maximum
category value. For example, VAR1(3) indicates that VART has three categories coded 1, 2,
and 3. However, if a variable is not coded with consecutive integers, the number of cate-
gories used in the analysis will differ from the number of observed categories. For
example, if a three-category variable is coded {2, 4, 6}, the maximum category value is 6.
The analysis treats the variable as having six categories, three of which (categories 1, 3,
and 5) are not observed and receive quantifications of 0.

e To avoid unnecessary output, use the AUTORECODE or RECODE command before
HOMALS to recode a variable that does not have sequential values (see the SPSS Syntax
Reference Guide for more information on AUTORECODE and RECODE).

Example

DATA LIST FREE/V1 V2 V3.
BEGIN DATA

311
6 11
313
322
322
6 2 2
6 13
6 2 2
322
6 21
END DATA.

AUTORECODE V1 /INTO NEWVARI.
HOMALS VARIABLES=NEWVAR1l V2 (2) V3(3).

e DATA LIST defines three variables, V1, V2, and V3.

e V1hastwo levels, coded 3 and 6, V2has two levels, coded 1 and 2, and V3 has three levels,
coded 1, 2, and 3.

e The AUTORECODE command creates NEWVART containing recoded values of V1. Values
of 3 are recoded to 1; values of 6 are recoded to 2.
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ANAL

e The maximum category value for both NEWVART and V2is 2. A maximum value of 3 is
specified for V3.

YSIS Subcommand

ANALYSIS limits the analysis to a specific subset of the variables named on the VARIABLES
subcommand.

e If ANALYSIS is not specified, all variables listed on the VARIABLES subcommand are used.
e ANALYSIS is followed by a variable list. The variables on the list must be specified on the

VARIABLES subcommand.

e Variables listed on the VARIABLES subcommand but not on the ANALYSIS subcommand

can still be used to label object scores on the PLOT subcommand.

Example
HOMALS VARIABLES=ACOLA(2) BCOLA(2) CCOLA(2) DCOLA(2)

/ANALYSIS=ACOLA BCOLA
/PRINT=0OBJECT QUANT
/PLOT=0BJECT (CCOLA) .

e The VARIABLES subcommand specifies four variables.
e The ANALYSIS subcommand limits analysis to the first two variables. The PRINT subcom-

mand lists the object scores and category quantifications from this analysis.

e The plot of the object scores is labeled with variable CCOLA, even though this variable is

not included in the computations.

NOBSERVATIONS Subcommand

NOBSERVATIONS specifies how many cases are used in the analysis.
e If NOBSERVATIONS is not specified, all available observations in the working data file

are used.

e NOBSERVATIONS is followed by an integer indicating that the first n cases are to be used.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want HOMALS to compute.

If you do not specify the DIMENSION subcommand, HOMALS computes two dimensions.
The specification on DIMENSION is a positive integer indicating the number of dimensions.
The minimum number of dimensions is 1.

The maximum number of dimensions is equal to the smaller of the two values below:

The total number of valid variable categories (levels) minus the number of variables with-
out missing values.

The number of observations minus 1.
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MAXITER Subcommand

MAXITER specifies the maximum number of iterations HOMALS can go through in its
computations.

e [f MAXITER is not specified, HOMALS will iterate up to 100 times.

e The specification on MAXITER is a positive integer indicating the maximum number of
iterations.

CONVERGENCE Subcommand

CONVERGENCE specifies a convergence criterion value. HOMALS stops iterating if the
difference in total fit between the last two iterations is less than the CONVERGENCE value.

e [f CONVERGENCE is not specified, the default value is 0.00001.
e The specification on CONVERGENCE is a positive value.

PRINT Subcommand

PRINT controls which statistics are included in your display output. The default display
includes the frequencies, eigenvalues, discrimination measures, and category
quantifications.

The following keywords are available:

FREQ Marginal frequencies for the variables in the analysis.
HISTORY History of the iterations.
EIGEN Eigenvalues.
DISCRIM Discrimination measures for the variables in the analysis.
OBJECT Object scores.
QUANT Category quantifications for the variables in the analysis.
DEFAULT FREQ, EIGEN, DISCRIM, and QUANT. These statistics are also displayed
when you omit the PRINT subcommand.

ALL All available statistics.
NONE No statistics.

PLOT Subcommand

PLOT can be used to produce plots of category quantifications, object scores, and discrimi-
nation measures.

e If PLOT is not specified, plots of the object scores and of the quantifications are produced.
e No plots are produced for a one-dimensional solution.
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The following keywords can be specified on PLOT:

DISCRIM Plots of the discrimination measures.
OBJECT Plots of the object scores.

QUANT Plots of the category quantifications.
DEFAULT QUANT and OBJECT.

ALL All available plots.

NONE No plots.

Keywords OBJECT and QUANT can each be followed by a variable list in parentheses to
indicate that plots should be labeled with those variables. For QUANT, the labeling
variables must be specified on both the VARIABLES and ANALYSIS subcommands. For
OBJECT, the variables must be specified on the VARIABLES subcommand but need not
appear on the ANALYSIS subcommand. This means that variables not used in the
computations can be used to label OBJECT plots. If the variable list is omitted, the default
object and quantification plots are produced.

Object score plots labeled with variables that appear on the ANALYSIS subcommand use
category labels corresponding to all categories within the defined range. Objects in a
category that is outside the defined range are labeled with the label corresponding to the
category immediately following the defined maximum category value.

Object score plots labeled with variables not included on the ANALYSIS subcommand use
all category labels, regardless of whether or not the category value is inside the defined
range.

All keywords except NONE can be followed by an integer value in parentheses to indicate
how many characters of the variable or value label are to be used on the plot. (If you specify
a variable list after OBJECT or QUANT, specify the value in parentheses after the list.) The
value can range from 1 to 20; the default is to use 12 characters. Spaces between words
count as characters.

DISCRIM plots use variable labels; all other plots use value labels.

If a variable label is not supplied, the variable name is used for that variable. If a value
label is not supplied, the actual value is used.

Variable and value labels should be unique.

When points overlap, the points involved are described in a summary following the plot.

Example
HOMALS VARIABLES COLAl (4) COLA2 (4) COLA3 (4) coLa4d (2)

/ANALYSIS COLAl COLA2 COLA3 COLA4
/PLOT OBJECT (COLA4) .

Four variables are included in the analysis.

OBUJECT requests a plot of the object scores labeled with the values of COLA4. Any object
whose COLA4 value is not 1 or 2, is labeled 3 (or the value label for category 3, if supplied).
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Example

HOMALS VARIABLES COLAl (4) COLA2 (4) COLA3 (4) COL2a4 (2)
/ANALYSIS COLAl COLA2 COLA3
/PLOT OBJECT (COLA4) .

e Three variables are included in the analysis.

e OBJECT requests a plot of the object scores labeled with the values of COLA4, a variable
not included in the analysis. Objects are labeled using all values of COLA4.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 versus dimension 2.

e The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

e The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

e Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

e Keyword MAX can be used instead of the second value to indicate that plots should be pro-
duced up to and including the highest dimension fit by the procedure.

Example

HOMALS COLAl COLA2 COLA3 COLA4 (4)
/PLOT NDIM(1,3) QUANT(5).

e The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

e QUANT requests plots of the category quantifications. The (5) specification indicates that
the first five characters of the value labels are to be used on the plots.

Example

HOMALS COLAl COLA2 COLA3 COLA4 (4)
/PLOT NDIM(ALL,3) QUANT(5).

e This plot is the same as above except for the ALL specification following NDIM. This
indicates that all possible pairs up to the second value should be plotted, so QUANT plots
will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

SAVE Subcommand

SAVE lets you add variables containing the object scores computed by HOMALS to the work-
ing data file.

e [f SAVE is not specified, object scores are not added to the working data file.
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e A variable rootname can be specified on the SAVE subcommand to which HOMALS adds
the number of the dimension. Only one rootname can be specified and it can contain up
to six characters.

e If a rootname is not specified, unique variable names are automatically generated. The
variable names are HOMn_m, where n is a dimension number and m is a set number. If
three dimensions are saved, the first set of names is HOM1_1, HOM2_1, and HOM3_1. If
another HOMALS is then run, the variable names for the second set are HOM1_2, HOM2_2,
HOMS3_2, and so on.

e Following the rootname, the number of dimensions for which you want to save object
scores can be specified in parentheses. The number cannot exceed the value on the
DIMENSION subcommand.

e If the number of dimensions is not specified, the SAVE subcommand saves object scores
for all dimensions.

e If you replace the working data file by specifying an asterisk (*) on a MATRIX subcom-
mand, the SAVE subcommand is not executed.

Example

HOMALS CAR1 CAR2 CAR3 CAR4 (5)
/DIMENSION=3
/SAVE=DIM(2) .

e Four variables, each with five categories, are analyzed.
e The DIMENSION subcommand specifies that results for three dimensions will be computed.

e SAVE adds the object scores from the first two dimensions to the working data file. The
names of these new variables will be DIM00001 and DIM00002, respectively.

MATRIX Subcommand

The MATRIX subcommand is used to write category quantifications to a matrix data file.
e The specification on MATRIX is keyword OUT and a file enclosed in parentheses.

® You can specify the file with either an asterisk (*) to indicate that the working data file is
to be replaced or with the name of an external file.

e The matrix data file has one case for each value of each original variable.

The variables of the matrix data file and their values are:

ROWTYPE_ String variable containing value QUANT for all cases.

LEVEL String variable LEVEL containing the values (or value labels if present) of
each original variable.

VARNAME_ String variable containing the original variable names.

DIM1...DIMn Numeric variable containing the category quantifications for each dimen-

sion. Each variable is labeled DIMn, where n represents the dimension number.

See the SPSS Syntax Reference Guide for more information on matrix data files.
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Overview

Options

OVERALS VARIABLES=varlist (max)

/ANALYSIS=varlist[ ({ORDI**})]

{SNOM }

{MNOM }

{NUME }
/SETS= n (# of vars in set 1, ..., # of vars in set n)
[ /NOBSERVATIONS=value]

[/DIMENSION={2** }]
{value}

[/INITIAL={NUMERICAL**}]
{RANDOM }

[/MAXITER={100%**}]
{value}

[ /CONVERGENCE={.00001**}]
{value }

[/PRINT=[DEFAULT] [FREQ**] [QUANT] [CENTROID**]
[HISTORY] [WEIGHTS**]
[OBJECT] [FIT] [NONE]]

[/PLOT=[NDIM= ({1 2 y**) 1
{value,value}
{ALL ,MAX }

[DEFAULT[ (n) ]] [OBJECT** [ (varlist)][(n)]]
[QUANT[ (varlist)][(n)]] [LOADINGS**[ (n)]]
[TRANS[ (varlist) ] ]E[CENTROIDI (varlist)][(n)]]
[NONE] ]

[/SAVE=[rootname] [ (value) ]]

[ /MATRIX=0UT ({* 1)1
{file}

**Default if subcommand or keyword is omitted.

OVERALS performs nonlinear canonical correlation analysis on two or more sets of
variables. Variables can have different optimal scaling levels, and no assumptions are made
about the distribution of the variables or the linearity of the relationships.

Optimal scaling levels. You can specify the level of optimal scaling at which you want to
analyze each variable.

Number of dimensions. You can specify how many dimensions OVERALS should compute.
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Iterations and convergence. You can specify the maximum number of iterations and the value
of a convergence criterion.

Display output. The output can include all available statistics, just the default statistics, or just
the specific statistics you request. You can also control whether some of these statistics are
plotted.

Saving scores. You can save object scores in the working data file.

Writing matrices. You can write a matrix data file containing quantification scores, centroids,
weights, and loadings for use in further analyses.

Basic Specification

e The basic specification is command OVERALS, the VARIABLES subcommand, the
ANALYSIS subcommand, and the SETS subcommand. By default, OVERALS estimates
a two-dimensional solution and displays a table listing optimal scaling levels of each
variable by set, eigenvalues and loss values by set, marginal frequencies, centroids
and weights for all variables, and plots of the object scores and component loadings.

Subcommand Order

Operations

Limitations

e The VARIABLES subcommand, ANALYSIS subcommand, and SETS subcommand must
appear in that order before all other subcommands.

e Other subcommands can appear in any order.

e [If the ANALYSIS subcommand is specified more than once, OVERALS is not executed.
For all other subcommands, if a subcommand is specified more than once, only the last
occurrence is executed.

e OVERALS treats every value in the range 1 to the maximum value specified on VARIABLES as
a valid category. To avoid unnecessary output, use the AUTORECODE or RECODE command
to recode a categorical variable with nonsequential values or with a large number of categories.
For variables treated as numeric, recoding is not recommended because the characteristic of
equal intervals in the data will not be maintained (see the SPSS Syntax Reference Guide for
more information on AUTORECODE and RECODE).

e String variables are not allowed; use AUTORECODE to recode nominal string variables.

e The data must be positive integers. Zeros and negative values are treated as system-
missing, which means that they are excluded from the analysis. Fractional values are
truncated after the decimal and are included in the analysis. If one of the levels of a
categorical variable has been coded 0 or some negative value and you want to treat it
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as a valid category, use the AUTORECODE or RECODE command to recode the values
of that variable.

e OVERALS ignores user-missing value specifications. Positive user-missing values less
than the maximum value specified on the VARIABLES subcommand are treated as valid
category values and are included in the analysis. If you do not want the category included,
use COMPUTE or RECODE to change the value to something outside of the valid range.
Values outside of the range (less than 1 or greater than the maximum value) are treated
as system-missing and are excluded from the analysis.

e Ifone variable in a set has missing data, all variables in that set are missing for that object
(case).

e Each set must have at least three valid (nonmissing, non-empty) cases.

Example
OVERALS VARIABLES=PRETEST1 PRETEST2 POSTESTl POSTEST2 (20)
SES(5) SCHOOL (3)
/ANALYSIS=PRETEST1 TO POSTEST2 (NUME) SES (ORDI) SCHOOL (SNOM)
/SETS=3(2,2,2)
/PRINT=OBJECT FIT
/PLOT=QUANT (PRETEST1 TO SCHOOL) .

e VARIABLES defines the variables and their maximum values.

e ANALYSIS specifies that all of the variables from PRETEST1 to POSTESTZ2 are to be
analyzed at the numeric level of optimal scaling, SES at the ordinal level, and SCHOOL
as a single nominal. These are all of the variables that will be used in the analysis.

e SETS specifies that there are three sets of variables to be analyzed and two variables in
each set.

e PRINT lists the object and fit scores.

e PLOT plots the single- and multiple-category coordinates of all of the variables in the
analysis.

VARIABLES Subcommand

VARIABLES specifies all of the variables in the current OVERALS procedure.

e The VARIABLES subcommand is required and precedes all other subcommands. The
actual word VARIABLES can be omitted.

e Each variable or variable list is followed by the maximum value in parentheses.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the analysis and the optimal scaling level at
which each variable is to be analyzed.

e The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

e The specification on ANALYSIS is a variable list and an optional keyword in parentheses
indicating the level of optimal scaling.
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The variables on ANALYSIS must also be specified on the VARIABLES subcommand.

Only active variables are listed on the ANALYSIS subcommand. Active variables are those
used in the computation of the solution. Passive variables, those listed on the VARIABLES
subcommand but not on the ANALYSIS subcommand, are ignored in the OVERALS solution.
Object score plots can still be labeled by passive variables.

The following keywords can be specified to indicate the optimal scaling level:

MNOM  Multiple nominal. The quantifications can be different for each dimension. When

all variables are multiple nominal and there is only one variable in each set,
OVERALS gives the same results as HOMALS.

SNOM  Single nominal. OVERALS gives only one quantification for each category. Objects

in the same category (cases with the same value on a variable) obtain the same
quantification. When all variables are SNOM, ORDI, or NUME, and there is only one
variable per set, OVERALS will give the same results as PRINCALS.

ORDI Ordinal. This is the default for variables listed without optimal scaling levels. The

order of the categories of the observed variable is preserved in the quantified variable.

NUME  Numerical. Interval or ratio scaling level. OVERALS assumes that the observed

variable already has numerical values for its categories. When all variables are
quantified at the numerical level and there is only one variable per set, the
OVERALS analysis is analogous to classical principal components analysis.

These keywords can apply to a variable list as well as to a single variable. Thus, the default
ORDI is not applied to a variable without a keyword if a subsequent variable on the list has a
keyword.

SETS Subcommand

SETS specifies how many sets of variables there are and how many variables are in each set.

SETS is required and must follow the ANALYSIS subcommand.

SETS is followed by an integer to indicate the number of variable sets. Following this
integer is a list of values in parentheses indicating the number of variables in each set.

There must be at least two sets.

The sum of the values in parentheses must equal the number of variables specified on
the ANALYSIS subcommand. The variables in each set are read consecutively from the
ANALYSIS subcommand.

For example,
/SETS=2(2,3)

indicates that there are two sets. The first two variables named on ANALYSIS are the first set,
and the last three variables named on ANALYSIS are the second set.
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NOBSERVATIONS Subcommand

NOBSERVATIONS specifies how many cases are used in the analysis.

If NOBSERVATIONS is not specified, all available observations in the working data file are
used.

NOBSERVATIONS is followed by an integer, indicating that the first n cases are to be used.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want OVERALS to compute.

If you do not specify the DIMENSION subcommand, OVERALS computes two dimensions.
DIMENSION is followed by an integer indicating the number of dimensions.
If all the variables are SNOM (single nominal), ORDI (ordinal), or NUME (numerical), the

maximum number of dimensions you can specify is the total number of variables on the
ANALYSIS subcommand.

If some or all of the variables are MNOM (multiple nominal), the maximum number of di-
mensions you can specify is the number of MNOM variable levels (categories) plus the
number of nonMNOM variables, minus the number of MNOM variables.

The maximum number of dimensions must be less than the number of observations minus 1.

If the number of sets is two and all variables are SNOM, ORDI, or NUME, the number of
dimensions should not be more than the number of variables in the smaller set.

If the specified value is too large, OVERALS tries to adjust the number of dimensions to
the allowable maximum. It might not be able to adjust if there are MNOM variables with
missing data.

INITIAL Subcommand

The INITIAL subcommand specifies the method used to compute the initial configuration.

The specification on INITIAL is keyword NUMERICAL or RANDOM. If the INITIAL subcom-
mand is not specified, NUMERICAL is the default.

NUMERICAL Treat all variables except multiple nominal as numerical. This is usually best

to use when there are no SNOM variables.

RANDOM Compute a random initial configuration. This should be used only when

some or all of the variables are SNOM.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations OVERALS can go through in its
computations.

If MAXITER is not specified, OVERALS will iterate up to 100 times.
The specification on MAXITER is an integer indicating the maximum number of iterations.
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CONVERGENCE Subcommand

CONVERGENCE specifies a convergence criterion value. OVERALS stops iterating if the
difference in fit between the last two iterations is less than the CONVERGENCE value.

e The default CONVERGENCE value is 0.00001.

e The specification on CONVERGENCE is any value greater than 0.000001. (Values less
than this might seriously affect performance.)

PRINT Subcommand

PRINT controls which statistics are included in your display output. The default output
includes a table listing optimal scaling levels of each variable by set, eigenvalues and loss
values by set by dimension, and the output produced by keywords FREQ, CENTROID, and
WEIGHTS.

The following keywords are available:

FREQ Marginal frequencies for the variables in the analysis.
HISTORY History of the iterations.
FIT Multiple fit, single fit, and single loss per variable.
CENTROID Category quantification scores, the projected centroids, and the centroids.
OBJECT Object scores.
QUANT Category quantifications and the single and multiple coordinates.
WEIGHTS Weights and component loadings.
DEFAULT FREQ, CENTROID, and WEIGHTS.
NONE Summary loss statistics.
PLOT Subcommand

PLOT can be used to produce plots of transformations, object scores, coordinates, centroids,
and component loadings.

e If PLOT is not specified, plots of the object scores and component loadings are produced.
The following keywords can be specified on PLOT:
LOADINGS Plot of the component loadings.

OBJECT Plot of the object scores.
TRANS Plot of category quantifications.
QUANT Plot of all category coordinates.

CENTROID Plot of all category centroids.
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DEFAULT OBJECT and LOADINGS.
NONE No plots.

e Keywords OBJECT, QUANT, and CENTROID can each be followed by a variable list in
parentheses to indicate that plots should be labeled with these variables. For QUANT and
CENTROID, the variables must be specified on both the VARIABLES and the ANALYSIS
subcommands. For OBJECT, the variables must be specified on VARIABLES but need not
appear on ANALYSIS. This means that variables not used in the computations can still be
used to label OBJECT plots. If the variable list is omitted, the default plots are produced.

e Object score plots use category labels corresponding to all categories within the defined
range. Objects in a category that is outside the defined range are labeled with the label
corresponding to the category immediately following the defined maximum category.

e If TRANS is followed by a variable list, only plots for those variables are produced. If a
variable list is not specified, plots are produced for each variable.

e All of the keywords except NONE can be followed by an integer in parentheses to indicate
how many characters of the variable or value label are to be used on the plot. (If you
specified a variable list after OBJECT, CENTROID, TRANS, or QUANT, you can specify the
value in parentheses after the list.) The value can range from 1 to 20. If the value is
omitted, 12 characters are used. Spaces between words count as characters.

e [f a variable label is missing, the variable name is used for that variable. If a value label
is missing, the actual value is used.

¢ You should make sure that your variable and value labels are unique by at least one letter
in order to distinguish them on the plots.

e When points overlap, the points involved are described in a summary following the plot.
In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 versus dimension 2.

e The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

e The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

e Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

e Keyword MAX can be used instead of the second value to indicate that plots should be
produced up to and including the highest dimension fit by the procedure.

Example

OVERALS COLAl COLA2 JUICEl JUICE2 (4)
/ANALYSIS=COLAl COLA2 JUICEl JUICEZ2 (SNOM)
/SETS=2(2,2)

/PLOT NDIM(1,3) QUANT(5).
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The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

QUANT requests plots of the category quantifications. The (5) specification indicates that
the first five characters of the value labels are to be used on the plots.

Example
OVERALS COLAl COLA2 JUICEl JUICE2 (4)

/ANALYSIS=COLAl COLA2 JUICEl JUICE2 (SNOM)
/SETS=2(2,2)
/PLOT NDIM(ALL,3) QUANT(5).

This plot is the same as above except for the ALL specification following NDIM. This
indicates that all possible pairs up to the second value should be plotted, so QUANT plots
will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

SAVE Subcommand

SAVE lets you add variables containing the object scores computed by OVERALS to the
working data file.

If SAVE is not specified, object scores are not added to the working data file.

A variable rootname can be specified on the SAVE subcommand to which OVERALS adds
the number of the dimension. Only one rootname can be specified, and it can contain up
to six characters.

If a rootname is not specified, unique variable names are automatically generated. The
variable names are OVEn_m, where n is a dimension number and m is a set number. If
three dimensions are saved, the first set of names are OVE71_1, OVE2_1, and OVE3 1. If
another OVERALS is then run, the variable names for the second set are OVE1_2, OVE2_2,
OVE3_2, and so on.

Following the name, the number of dimensions for which you want object scores saved
can be listed in parentheses. The number cannot exceed the value of the DIMENSION
subcommand.

The prefix should be unique for each OVERALS command in the same session. If it is not,
OVERALS replaces the prefix with DIM, OBJ, or OBSAVE. If all of these already exist,
SAVE is not executed.

If the number of dimensions is not specified, the SAVE subcommand saves object scores
for all dimensions.

If you replace the working data file by specifying an asterisk (*) on a MATRIX subcom-
mand, the SAVE subcommand is not executed.

Example
OVERALS CAR1 CAR2 CAR3(5) PRICE (10)

/SET=2(3,1)

/ANALYSIS=CAR1 TO CAR3 (SNOM) PRICE (NUME)
/DIMENSIONS=3

/SAVE=DIM(2) .
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e Three single nominal variables, CAR1, CAR2, and CAR3, each with five categories, and
one numeric level variable, with ten categories, are analyzed.

e The DIMENSIONS subcommand requests results for three dimensions.

e SAVE adds the object scores from the first two dimensions to the working data file. The
names of these new variables will be DIM00001 and DIM00002, respectively.

MATRIX Subcommand

The MATRIX subcommand is used to write category quantifications, coordinates, centroids,
weights, and component loadings to a matrix data file.

e The specification on MATRIX is keyword OUT and a file enclosed in parentheses.

® You can specify the file with either an asterisk (*) to indicate that the working data file is
to be replaced or with the name of an external file.

o All values are written to the same file.

e The matrix data file has one case for each value of each original variable.

The variables of the matrix data file and their values are:

ROWTYPE_

LEVEL

VARNAME_
VARTYPE_

SET_
DIML...DIMn

String variable containing value QUANT for the category quantifications,
SCOOR _ for the single-category coordinates, MCOOR_ for multiple-
category coordinates, CENTRO_ for centroids, PCENTRO_ for projected
centroids, WEIGHT_ for weights, and LOADING_ for the component
scores.

String variable containing the values (or value labels if present) of each
original variable for category quantifications. For cases with
ROWTYPE_=LOADING_ or WEIGHT_, the value of LEVEL is blank.

String variable containing the original variable names.

String variable containing values MULTIPLE, SINGLE N, ORDINAL, or
NUMERICAL, depending on the level of optimal scaling specified for the
variable.

The set number of the original variable.

Numeric variables containing the category quantifications, the single-
category coordinates, multiple-category coordinates, weights, centroids,
projected centroids, and component loadings for each dimension. Each one
of these variables is labeled DIMn, where n represents the dimension number.
If any of these values cannot be computed, they are assigned 0 in the file.

See the SPSS Syntax Reference Guide for more information on matrix data files.
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Overview

Options

PRINCALS VARIABLES=varlist (max)

[/ANALYSIS=varlist[ ({ORDI**})]]
{sNoM }
{MNOM }
{NUME }

[ /NOBSERVATIONS=value]

[/DIMENSION={2** }]
{value}

[/MAXITER={100%*%*}]
{value}

[/CONVERGENCE={.00001**}]
{value }

[/PRINT=[DEFAULT] [FREQ**] [EIGEN**] [LOADINGS**] [QUANT]
[HISTORY] [CORRELATION] [OBJECT] [ALL] [NONE]]

[/PLOT=[NDIM= ({1 ,2 Prx) ]
{value,value}
{ALL ,MAX
[DEFAULT[ (n) ]] [OBJECT** [ (varlist)][(n)]]
[QUANT** [ (varlist)][(n)]] [LOADINGSI (n)]]
[ALL[ (n)]] [NONE]]

[/SAVE=[rootname] [ (value}]
[ /MATRIX=OUT ({* 1)1
{file}

**Default if subcommand or keyword is omitted.

PRINCALS (principal components analysis by means of alternating least squares) analyzes
a set of variables for major dimensions of variation. The variables can be of mixed optimal
scaling levels, and the relationships among observed variables are not assumed to be linear.

Optimal scaling level. You can specify the optimal scaling level for each variable to be used

in the analysis.

Number of cases. You can restrict the analysis to the first n observations.
Number of dimensions. You can specify how many dimensions PRINCALS should compute.

Iterations and convergence. You can specify the maximum number of iterations and the value

of a convergence criterion.

285
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Display output. The output can include all available statistics, only the default statistics, or
only the specific statistics you request. You can also control whether some of these statistics
are plotted.

Saving scores. You can save object scores in the working data file.

Writing matrices. You can write a matrix data file containing category quantifications and
loadings for use in further analyses.

Basic Specification

e The basic specification is command PRINCALS and the VARIABLES subcommand.
PRINCALS performs the analysis assuming an ordinal level of optimal scaling for all
variables and uses all cases to compute a two-dimensional solution. By default, mar-
ginal frequencies, eigenvalues, and summary measures of fit and loss are displayed,
and quantifications and object scores are plotted.

Subcommand Order

Operations

Limitations

e The VARIABLES subcommand must precede all others.
e Other subcommands can appear in any order.

o [f the ANALYSIS subcommand is specified more than once, PRINCALS is not executed. For
all other subcommands, only the last occurrence of each subcommand is executed.

e PRINCALS treats every value in the range of 1 to the maximum value specified on
VARIABLES as a valid category. Use the AUTORECODE or RECODE command if you want
to recode a categorical variable with nonsequential values or with a large number of cate-
gories to avoid unnecessary output. For variables treated as numeric, recoding is not recom-
mended because the intervals between consecutive categories will not be maintained.

e String variables are not allowed; use AUTORECODE to recode nominal string variables
into numeric ones before using PRINCALS.

e The data must be positive integers. Zeros and negative values are treated as system-missing
and are excluded from the analysis. Fractional values are truncated after the decimal and are
included in the analysis. If one of the levels of a categorical variable has been coded O or a
negative value and you want to treat it as a valid category, use the AUTORECODE or
RECODE command to recode the values of that variable (see the SPSS Syntax Reference
Guide for more information on AUTORECODE and RECODE).

e PRINCALS ignores user-missing value specifications. Positive user-missing values less
than the maximum value on the VARIABLES subcommand are treated as valid category
values and are included in the analysis. If you do not want the category included, you
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can use COMPUTE or RECODE to change the value to something outside of the valid
range. Values outside of the range (less than 1 or greater than the maximum value) are
treated as system-missing.

Example

PRINCALS VARIABLES=ACOLA BCOLA (2) PRICEA PRICEB(5)
/ANALYSIS=ACOLA BCOLA (SNOM) PRICEA PRICEB (NUME)
/PRINT=QUANT OBJECT.

e VARIABLES defines the variables and their maximum number of levels.

e The ANALYSIS subcommand specifies that variables ACOLA and BCOLA are single nomi-
nal (SNOM) and that variables PRICEA and PRICEB are numeric (NUME).

e The PRINT subcommand lists the category quantifications and object scores.
e By default, plots of the category quantifications and the object scores are produced.

VARIABLES Subcommand

VARIABLES specifies all of the variables that will be used in the current PRINCALS procedure.

e The VARIABLES subcommand is required and precedes all other subcommands. The
actual word VARIABLES can be omitted.

e Each variable or variable list is followed by the maximum number of categories (levels)
in parentheses.

e The number specified in parentheses indicates the number of categories and the maximum
category value. For example, VAR1(3) indicates that VAR has three categories coded 1, 2,
and 3. However, if a variable is not coded with consecutive integers, the number of
categories used in the analysis will differ from the number of observed categories. For
example, if a three category variable is coded {2, 4, 6}, the maximum category value is 6.
The analysis treats the variable as having six categories, three of which are not observed
and receive quantifications of 0.

e To avoid unnecessary output, use the AUTORECODE or RECODE command before
PRINCALS to recode a categorical variable that was coded with nonsequential values. As
noted in “Limitations,” recoding is not recommended with variables treated as numeric
(see the SPSS Base Syntax Reference Guide for more information on AUTORECODE and
RECODE).
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Example

DATA LIST FREE/V1 V2 V3.
BEGIN DATA

awohohoyWwwwoyw

[y

NNMNNENNNNR R
PNNNDWNNNDWERE

END DATA.
AUTORECODE V1 /INTO NEWVARI.
PRINCALS VARIABLES=NEWVAR1 V2 (2) V3(3).

DATA LIST defines three variables, V1, V2, and V3.

V1 has two levels, coded 3 and 6, V2has two levels, coded 1 and 2, and V3 has three levels,
coded 1, 2, and 3.

The AUTORECODE command creates NEWVART containing recoded values of V1. Values
of 3 are recoded to 1 and values of 6 are recoded to 2.

A maximum value of 2 can then be specified on the PRINCALS VARIABLES subcommand
as the maximum category value for both NEWVAR? and V2. A maximum value of 3 is
specified for V3.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the computations and the optimal scaling level
used by PRINCALS to quantify each variable or variable list.

If ANALYSIS is not specified, an ordinal level of optimal scaling is assumed for all variables.

The specification on ANALYSIS is a variable list and an optional keyword in parentheses
to indicate the optimal scaling level.

The variables on the variable list must also be specified on the VARIABLES subcommand.

Variables listed on the VARIABLES subcommand but not on the ANALYSIS subcommand
can still be used to label object scores on the PLOT subcommand.

The following keywords can be specified to indicate the optimal scaling level:

MNOM  Multiple nominal. The quantifications can be different for each dimension. When

all variables are multiple nominal, PRINCALS gives the same results as HOMALS.

SNOM  Single nominal. PRINCALS gives only one quantification for each category. Objects

in the same category (cases with the same value on a variable) obtain the same
quantification. When DIMENSION=1 and all variables are SNOM, this solution is the
same as that of the first HOMALS dimension.

ORDI Ordinal. This is the default for variables listed without optimal scaling levels and

for all variables if the ANALYSIS subcommand is not used. The order of the
categories of the observed variable is preserved in the quantified variable.
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NUME  Numerical. This is the interval or ratio level of optimal scaling. PRINCALS assumes

that the observed variable already has numerical values for its categories. When all
variables are at the numerical level, the PRINCALS analysis is analogous to classical
principal components analysis.

These keywords can apply to a variable list as well as to a single variable. Thus, the default
ORDI is not applied to a variable without a keyword if a subsequent variable on the list has a
keyword.

NOBSERVATIONS Subcommand

NOBSERVATIONS specifies how many cases are used in the analysis.

If NOBSERVATIONS is not specified, all available observations in the working data file are
used.

NOBSERVATIONS is followed by an integer indicating that the first n cases are to be used.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want PRINCALS to compute.

If you do not specify the DIMENSION subcommand, PRINCALS computes two dimensions.
DIMENSION is followed by an integer indicating the number of dimensions.

If all of the variables are SNOM (single nominal), ORDI (ordinal), or NUME (numerical),
the maximum number of dimensions you can specify is the smaller of the number of ob-
servations minus 1 or the total number of variables.

If some or all of the variables are MNOM (multiple nominal), the maximum number of di-
mensions is the smaller of the number of observations minus 1 or the total number of valid
MNOM variable levels (categories) plus the number of SNOM, ORDI, and NUME variables,
minus the number of MNOM variables without missing values.

PRINCALS adjusts the number of dimensions to the maximum if the specified value is too
large.

The minimum number of dimensions is 1.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations PRINCALS can go through in its
computations.

If MAXITER is not specified, PRINCALS will iterate up to 100 times.
MAXITER is followed by an integer indicating the maximum number of iterations allowed.
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CONVERGENCE Subcommand

CONVERGENCE specifies a convergence criterion value. PRINCALS stops iterating if the
difference in total fit between the last two iterations is less than the CONVERGENCE value.

e [f CONVERGENCE is not specified, the default value is 0.00001.
e The specification on CONVERGENCE is a convergence criterion value.

PRINT Subcommand

PRINT controls which statistics are included in your output. The default output includes
frequencies, eigenvalues, loadings, and summary measures of fit and loss.

PRINT is followed by one or more of the following keywords:

FREQ
HISTORY
EIGEN
CORRELATION

OBJECT
QUANT

LOADINGS
DEFAULT
ALL

NONE

PLOT Subcommand

Marginal frequencies for the variables in the analysis.
History of the iterations.
Eigenvalues.

Correlation matrix for the transformed variables in the analysis. No
correlation matrix is produced if there are any missing data.

Object scores.

Category quantifications and category coordinates for SNOM, ORDI,
and NUME variables and category quantifications in each dimension
for MNOM variables.

Component loadings for SNOM, ORDI, and NUME variables.
FREQ, EIGEN, LOADINGS, and QUANT.
All of the available statistics.

Summary measures of fit.

PLOT can be used to produce plots of category quantifications, object scores, and component

loadings.

e If PLOT is not specified, plots of the object scores and the quantifications are produced.

e No plots are produced for a one-dimensional solution.

PLOT is followed by one or more of the following keywords:

LOADINGS
OBJECT
QUANT

Plots of the component loadings of SNOM, ORDI, and NUME variables.
Plots of the object scores.

Plots of the category quantifications for MNOM variables and plots of the
single-category coordinates for SNOM, ORDI, and NUME variables.
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DEFAULT QUANT and OBJECT.
ALL All available plots.
NONE No plots.

Keywords OBJECT and QUANT can each be followed by a variable list in parentheses to
indicate that plots should be labeled with these variables. For QUANT, the variables must
be specified on both the VARIABLES and ANALYSIS subcommands. For OBJECT, the
variables must be specified on VARIABLES but need not appear on the ANALYSIS subcom-
mand. This means that variables not included in the computations can still be used to label
OBJECT plots. If the variable list is omitted, only the default plots are produced.

Object scores plots labeled with variables that appear on the ANALYSIS subcommand use
category labels corresponding to all categories within the defined range. Objects in a cat-
egory that is outside the defined range are labeled with the label corresponding to the next
category greater than the defined maximum category.

Object scores plots labeled with variables not included on the ANALYSIS subcommand use
all category labels, regardless of whether or not the category value is inside the defined
range.

All of the keywords except NONE can be followed by an integer in parentheses to indicate
how many characters of the variable or value label are to be used on the plot. (If you spec-
ify a variable list after OBJECT or QUANT, you can specify the value in parentheses after
the list.) The value can range from 1 to 20. If the value is omitted, twelve characters are
used. Spaces between words count as characters.

The LOADINGS plots and one of the QUANT plots use variable labels; all other plots that
use labels use value labels.

If a variable label is missing, the variable name is used for that variable. If a value label
is missing, the actual value is used.

You should make sure that your variable and value labels are unique by at least one letter
in order to distinguish them on the plots.

When points overlap, the points involved are described in a summary following the plot.

Example
PRINCALS VARIABLES COLAl (4) COLA2 (4) COLA3 (4) coLad (2)

/ANALYSIS COLAl COLA2 (SNOM) COLA3 (ORDI) COLA4 (ORDI)
/PLOT OBJECT (COLA4) .

Four variables are included in the analysis.

OBJECT requests a plot of the object scores labeled with the values of COLA4. Any object
whose COLA4 value is not 1 or 2 is labeled 3 (or the value label for category 3, if defined).

Example
PRINCALS VARIABLES COLAl (4) COLA2 (4) COLA3 (4) coLad (2)

/ANALYSIS COLAl COLA2 (SNOM) COLA3 (ORDI)
/PLOT OBJECT (COLA4) .

Three variables are included in the analysis.
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e OBJECT requests a plot of the object scores labeled with the values of COLA4, a variable
not included in the analysis. Objects are labeled using all values of COLA4.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 versus dimension 2.

e The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

e The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

e Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

e Keyword MAX can be used instead of the second value to indicate that plots should be
produced up to, and including, the highest dimension fit by the procedure.

Example
PRINCALS COLAl COLA2 COLA3 COLA4 (4)
/PLOT NDIM(1,3) QUANT(5) .

e The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

e QUANT requests plots of the category quantifications. The (5) specification indicates that
the first five characters of the value labels are to be used on the plots.

Example

PRINCALS COLAl COLA2 COLA3 COLA4 (4)
/PLOT NDIM(ALL,3) QUANT(5).

e This plot is the same as above except for the ALL specification following NDIM. This in-
dicates that all possible pairs up to the second value should be plotted, so QUANT plots
will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

SAVE Subcommand

SAVE lets you add variables containing the object scores computed by PRINCALS to the
working data file.

e [f SAVE is not specified, object scores are not added to the working data file.

e A variable rootname can be specified on the SAVE subcommand to which PRINCALS adds
the number of the dimension. Only one rootname can be specified, and it can contain up
to six characters.

e If a rootname is not specified, unique variable names are automatically generated. The
variable names are PRIn_m, where n is a dimension number and m is a set number. If three
dimensions are saved, the first set of names is PRI1_1, PRI2_1, and PRI3_1. If another
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PRINCALS is then run, the variable names for the second set are PRI1_2, PRI2_2, PRI3_2,
and so on.

Following the name, the number of dimensions for which you want to save object scores
can be listed in parentheses. The number cannot exceed the value of the DIMENSION
subcommand.

If the number of dimensions is not specified, the SAVE subcommand saves object scores
for all dimensions.

If you replace the working data file by specifying an asterisk (*) on a MATRIX subcom-
mand, the SAVE subcommand is not executed.

The prefix should be unique for each PRINCALS command in the same session. If it is not,
PRINCALS replaces the prefix with DIM, OBJ, or OBSAVE. If all of these already exist,
SAVE is not executed.

Example
PRINCALS CAR1 CAR2 CAR3(5) PRICE (10)

/ANALYSIS=CAR1 TO CAR3 (SNOM) PRICE (NUM)
/DIMENSIONS=3
/SAVE=DIM(2) .

Three nominal variables, CAR1, CAR2, and CAR3, each with five categories, and one nu-
merical (interval level) variable, with ten categories, are analyzed in this PRINCALS
example.

The DIMENSIONS subcommand requests results for three dimensions.

SAVE adds the object scores from the first two dimensions to the working data file. The
names of these new variables will be DIM00001 and DIM00002, respectively.

MATRIX Subcommand

The MATRIX subcommand is used to write category quantifications, single-category coordi-
nates, and component loadings to a matrix data file.

The specification on MATRIX is keyword OUT and the file enclosed in parentheses.

You can specify the file with either an asterisk (*) to indicate that the working data file is
to be replaced or with the name of an external file.

The category quantifications, coordinates, and component loadings are written to the
same file.

The matrix data file has one case for each value of each original variable.

The variables of the matrix data file and their values are:

ROWTYPE_ String variable rowtype_ containing value QUANT for the category

quantifications, SCOOR_ for single-category coordinates, MCOOR _
for multiple-category coordinates, and LOADING _ for the component
scores.

LEVEL String variable containing the values (or value labels if present) of

each original variable for category quantifications. For cases with
ROWTYPE_=LOADING_, the value of LEVEL is blank.
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VARNAME_ String variable containing the original variable names.

VARTYPE_ String variable containing values MULTIPLE, SINGLE N, ORDINAL,
or NUMERICAL, depending on the optimal scaling level specified for
the variable.

DIM1...DIMn Numeric variables containing category quantifications, the single-
category coordinates, and component loadings for each dimension.
Each variable is labeled DIMn, where n represents the dimension num-
ber. The single-category coordinates and component loadings are
written only for SNOM, ORDI, and NUME variables.

See the SPSS Syntax Reference Guide for more information on matrix data files.
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PROXSCAL varlist

[/TABLE = {rowid BY columid [BY sourceid]}]
{sourceid }

[/SHAPE = [{LOWER**}]]
{UPPER }
{BOTH }
[/INITIAL = [{SIMPLEX** 111
{TORGERSON }
{RANDOM[ ({1})] }
{n}
{[(file)] [varlist] }
[/WEIGHTS = varlist]
[/CONDITION = [{MATRIX** 111
{UNCONDITIONAL }
[/TRANSFORMATION = [{RATIO** 1]
{ INTERVAL }
{ORDINAL[ ({UNTIE 11 }
{KEEPTIES}
{SPLINE [DEGREE = {2}] [INKNOT = {1}]}
{n} {n}
[/PROXIMITIES = [{DISSIMILARITIES**}]]
{SIMILARITIES }
[/MODEL = [{IDENTITY** 111
{WEIGHTED }
{GENERALIZED }
{REDUCED[ ({2}) 1}
{n}
[/RESTRICTIONS = {COORDINATES (file) [{ALL 1] 1]
{varlist}
{VARIABLES (file) [{ALL }1 [ ({INTERVAL 1)1}
{varlist} {NOMINAL }
{ORDINAL[ ({UNTIE 1)1 }
{KEEPTIES}

{SPLINE[DEGREE={2}] [INKNOT={1}]}
{n} {n}

[/ACCELERATION = NONE]

[/CRITERIA = [DIMENSIONS ({2*%*
{min[, max]
[MAXITER ({100*%*})]
{n }
[DIFFSTRESS ({0.0001*%*}) ]

1]
}

{value }
[MINSTRESS ({0.0001**}) ]]
{value }

295
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[/PRINT = [NONE] [INPUT] [RANDOM] [HISTORY] [STRESS**] [DECOMPOSITION]
[COMMON**] [DISTANCES] [WEIGHTS**] [ INDIVIDUAL]
[TRANSFORMATIONS] [VARIABLES**] [CORRELATIONS**] ]
[/PLOT = [NONE] [STRESS] [COMMON**] [WEIGHTS**] [CORRELATIONS** ]
[INDIVIDUAL ({varlist})]
{ALL }
[TRANSFORMATIONS ({varlist}) [({varlist})[...]1] 1
{ALL } {ALL }
[RESIDUALS ({varlist}) [({varlist})[...1] 1
{ALL } {ALL }
[VARIABLES ({varlist})]]
{ALL }
[/OUTFILE = [COMMON(file)] [WEIGHTS(file)] [DISTANCES (file)]
[TRANSFORMATIONS (file)] [VARIABLES(file)] 1
[/MATRIX = IN({file})]].
** Default if the subcommand is omitted.
Overview
PROXSCAL performs multidimensional scaling of proximity data to find a least-squares rep-
resentation of the objects in a low-dimensional space. Individual differences models are al-
lowed for multiple sources. A majorization algorithm guarantees monotone convergence for
optionally transformed metric and nonmetric data under a variety of models and constraints.
Options

Data input. You can read one or more square matrices of proximities that can either be sym-
metrical or asymmetrical. Alternatively, you can provide specifications with the TABLE sub-
command for matrices with proximities in a stacked format. You can read proximity matrices
created by PROXIMITIES and CLUSTER with the MATRIX subcommand. Additionally, you
can read weights, initial configurations, fixed coordinates, and independent variables.

Methodological assumptions. You can specify transformations considering all sources (uncon-
ditional) or separate transformations for each source (matrix-conditional) on the CONDITION
subcommand. You can treat proximities as nonmetric (ordinal) or as metric (numerical or
splines) using the TRANSFORMATION subcommand. Ordinal transformations can treat tied
observations as tied (discrete) and untied (continuous). You can specify whether your prox-
imities are similarities or dissimilarities on the PROXIMITIES subcommand.

Model selection. You can specify multidimensional scaling models by selecting a combination
of PROXSCAL subcommands, keywords, and criteria. The subcommand MODEL offers, be-
sides the identity model, three individual differences models. You can specify other selec-
tions on the CRITERIA subcommand.

Constraints. You can specify fixed coordinates or independent variables to restrict the config-
uration(s) on the RESTRICTIONS subcommand. You can specify transformations (numerical,
nominal, ordinal, and splines) for the independent variables on the same subcommand.
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Output. You can produce output that includes the original and transformed proximities, history
of iterations, common and individual configurations, individual space weights, distances, and
decomposition of the stress. Plots can be produced of common and individual configurations,
individual space weights, transformations, and residuals.

Basic Specification

The basic specification is PROXSCAL followed by a variable list. By default, PROXSCAL pro-
duces a two-dimensional metric Euclidean multidimensional scaling solution (identity mod-
el). Input is expected to contain one or more square matrices with proximities that are
dissimilarities. The ratio transformation of the proximities is matrix-conditional. The analy-
sis uses a simplex start as an initial configuration. By default, output includes fit and stress
values, the coordinates of the common space, and a chart of the common space configuration.

Syntax Rules

e The number of dimensions (both minimum and maximum) may not exceed the number
of proximities minus one.

¢ Dimensionality reduction is omitted if combined with multiple random starts.
e If there is only one source, then the model is always assumed to be identity.

Limitations

e PROXSCAL needs at least three objects, which means that at least three variables must be
specified in the variable list. In the case of the TABLE subcommand, the minimum value
for rowid and columnid must be at least three.

e PROXSCAL recognizes data weights created by the WEIGHT command but only in combi-
nation with the TABLE subcommand.

e Split-file has no implications for PROXSCAL.

Variable List Subcommand

The variable list identifies the columns in the proximity matrix or matrices that PROXSCAL
reads. Each variable identifies one column of the proximity matrix, with each case in the
working data file representing one row, unless specified otherwise with the TABLE subcom-
mand. In this case, the variable list identifies whole matrices or sources.

e Only numeric variables may be specified.

e The total number of cases must be divisible by the number of variables. This is not appli-
cable when the TABLE subcommand is used.

e PROXSCAL reads data row by row; the columns are represented by the variables on the
variable list. The order of the variables on the list is crucial.
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Example
DATA LIST

/object0l object02 object03 object04.

BEGIN DATA

0263
205 4
6 501
3410

END DATA.

PROXSCAL VARIABLES=object0l TO object04.

e This example specifies an analysis on a 4 X 4 proximity matrix.
e The total number of cases must be divisible by 4.

TABLE Subcommand

The TABLE subcommand specifies the row identifier rowid and the column identifier columnid.
Using TABLE, the proximities of separate sources are given in separate variables on the
PROXSCAL variable list.

In the same manner, sources are identified by sourceid. In combination with rowid and

columnid, the proximities are stacked in one single variable, containing the proximities of all
sources, where sources are distinguished by the values of sourceid.

Using sourceid as the only variable on the TABLE subcommand indicates the use of

stacked matrices, where individual stacked matrices are recognized by different values of
sourceid.

Rowid, columnid, and sourceid should not be specified on the variable list.

When specifying both upper- and lower-triangular parts of the matrix, the SHAPE sub-
command will determine the handling of the data.

If a cell’s value is specified multiple times, the final specification is used.
Rowid, columnid, and sourceid must appear in that order.

Omitting sourceid causes PROXSCAL to use the sources specified on the PROXSCAL vari-
able list. Each variable is assumed to contain the proximities of one source.

Specifying multiple sources on the PROXSCAL variable list in conjunction with specify-
ing rowid, columnid, and sourceid is not possible and causes PROXSCAL to ignore sourceid.

rowid Row identifying variable. The values of this variable specify the row object

of a proximity. The values must be integers between 1 and the number of ob-
jects, inclusive.

columnid Column identifying variable. The values specify the column object of a prox-

imity. The values must be integers between 1 and the number of objects,
inclusive.
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sourceid Source identifying variable. The values specify the source number and must
be integers between 1 and the number of sources, inclusive. The value labels
of this variable are used to identify sources on other subcommands. These
value labels must comply with SPSS variable name conventions. Omitting a
value label causes PROXSCAL to use the default label SRC_n where n is the
number of the source.

Example
DATA LIST
/r_id c_id men women.
BEGIN DATA
21 1.08 1.14
310.68 1.12
3 2 0.95 0.75
4 1 0.96 0.32
4 2 0.76 0.98
4 3 0.47 0.69

13 10 0.55 0.86
13 11 0.61 0.97
13 12 0.46 0.83
END DATA.

PROXSCAL men women
/TABLE=r_id BY c_id
/PLOT = INDIVIDUAL (women) .

e PROXSCAL reads two proximity matrices (men and women), where the row objects are
specified by r_id and the column objects by ¢_id.

e A chart of the individual space for women is plotted.
This is one way to proceed. Another way is to add the proximities of the additional source

below the proximities of the first source and specify sourceid on the TABLE subcommand,
containing values distinguishing the first and the additional source (see the next example).
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Example

DATA LIST
/r_id c_id s_id prox.

CoocOoRRRREE.
[
)

SO W

13 10 2 0.86
13 11 2 0.97
13 12 2 0.83
END DATA.

VALUE LABELS s_id 1 ‘men’ 2 ‘women’.

PROXSCAL prox
/TABLE=r_id BY c_id BY s_id
/PLOT = INDIVIDUAL (women) .

e PROXSCAL reads two proximity matrices. The row objects are identified by r_id and the
column objects by c_id. The proximity matrices are gathered in one variable, source01,
where each source is distinguished by a value of the source identifying variable s_id.

e A chart of the individual space for women is plotted.

Example

DATA LIST
/obj_1 obj_2 obj_3 obj_4 s_id

EGIN DATA

OO OO OO
NN R PR

10 11 12 0 2
END DATA.

VALUE LABELS s_id 1 ‘women’ 2 ‘men’.

PROXSCAL obj_1 obj_2 obj_3 obj_4
/TABLE = s_id
/PLOT = INDIVIDUAL (women) .
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e PROXSCAL reads two proximity matrices. The objects are given on the PROXSCAL
variable list. Each source is distinguished by a value of the source identifying variable
s_id, which is also used for labeling.

e A chart of the individual space for women is plotted.

SHAPE Subcommand

The SHAPE subcommand specifies the structure of the proximity matrix.

LOWER Lower-triangular data matrix. For a lower-triangular matrix, PROXSCAL
expects a square matrix of proximities of which the lower-triangular
elements are used under the assumption that the full matrix is symmetric.
The diagonal is ignored but must be included.

UPPER Upper-triangular data matrix. For an upper-triangular matrix, PROXSCAL
expects a square matrix of proximities of which the upper-triangular
elements are used under the assumption that the full matrix is symmetric.
The diagonal is ignored but must be included.

BOTH Full data matrix. The values in the corresponding cells in the upper and
lower triangles may be different. PROXSCAL reads the complete square
matrix and, after obtaining symmetry, continues with the lower-triangular
elements. The diagonal is ignored but must be included.

e System or other missing values on the (virtual) diagonal are ignored.

Example

PROXSCAL object0l TO object07
/SHAPE=UPPER.

e PROXSCAL reads square matrices of seven columns per matrix of which the upper-
triangular parts are used in computations.

e Although specified, the diagonal and lower-triangular part of the matrix are not used.

INITIAL Subcommand

INITIAL defines the initial or starting configuration of the common space for the analysis.
When a reduction in dimensionality is specified on the CRITERIA subcommand, a derivation
of coordinates in the higher dimensionality is used as a starting configuration in the lower
dimensionality.

® You can specify one of the three keywords listed below.
® You can specify a variable list containing the initial configuration.

SIMPLEX Simplex start. This specification is the default. PROXSCAL starts by placing
the objects in the configuration all at the same distance of each other and tak-
ing one iteration to improve this high-dimensional configuration, followed
by a dimension-reduction operation to obtain the user-provided maximum
dimensionality specified in the CRITERIA subcommand with the keyword
DIMENSIONS.
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TORGERSON
RANDOM

Torgerson start. A classical scaling solution is used as initial configuration.

(Multiple) random start. You can specify the number of random starts (n). n
is any positive integer. The random sequence can be controlled by the
RANDOM SEED command and not by a subcommand within the PROXSCAL
command. Each analysis starts with a different random configuration. In the
output, all n final stress values are reported, as well as the initial seeds of
each analysis (for reproduction purposes), followed by the full output of the
analysis with the lowest stress value. The default number of random starts is
1. Reduction of dimensionality—that is, using a maximum dimensionality
that is larger than the minimum dimensionality—is not allowed within this
option and the minimum dimensionality is used, if reduction is specified
anyway.

Instead of these keywords, a parenthesized SPSS data file can be specified containing the co-
ordinates of the initial configuration. If the variable list is omitted, the first MAXDIM variables
are automatically selected, where MAXDIM is the maximum number of dimensions requested
for the analysis on the CRITERIA subcommand. Only nonmissing values are allowed as initial

coordinates.

Example

PROXSCAL object0l TO objectl?
/INITIAL=RANDOM (100) .

e This example performs 100 analyses each, starting with different random configurations.
The results of the analysis with the lowest final stress are displayed in the output.

WEIGHTS Subcommand

The WEIGHTS subcommand specifies non-negative weights on the proximities included in
the working data file.

e The number and order of the variables in the variable list is important. The first variable
on the WEIGHTS variable list corresponds to the first variable on the PROXSCAL variable
list. This is repeated for all variables on the variable lists. Every proximity has its own
weight. The number of variables on the WEIGHTS subcommand must therefore be equal
to the number of variables on the PROXSCAL variable list.

e Negative weights are not allowed. If specified, a warning will be issued and the procedure

will abort.

Example

DATA LIST FILE='cola.dat’ FREE
/object0l TO objectld weight0l TO weightl4.

PROXSCAL object0l TO objectld
/WEIGHTS=weight0l TO weightl4.

o In this example, the VARIABLES subcommand indicates that there are 14 columns per ma-
trix of which the weights can be found in weight01 to weight14.

e weight01 contains the weights for object01, etc.
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CONDITION Subcommand

CONDITION specifies how transformations among sources are compared. The
TRANSFORMATION subcommand specifies the type of transformation.

MATRIX Matrix conditional. Only the proximities within each source are com-
pared with each other. This is the default.

UNCONDITIONAL Unconditional. This specification is appropriate when the proximities
in all sources can be compared with each other and result in a single
transformation of all sources simultaneously.

e Note that if there is only one source, then MATRIX and UNCONDITIONAL give the same
results.

Example

PROXSCAL object0l TO objectlb
/CONDITION=UNCONDITIONAL
/TRANSFORMATION=ORDINAL (UNTIE) .

e In this example, the proximities are ordinally transformed, where tied proximities are
allowed to be untied. The transformations are performed simultaneously over all possible
sources.

TRANSFORMATION Subcommand

TRANSFORMATION offers four different options for optimal transformation of the original
proximities. The resulting values are called transformed proximities. The distances between
the objects in the configuration should match these transformed proximities as closely as
possible.

RATIO No transformation. Omitting the entire subcommand is equivalent to using
this keyword. In both cases, the transformed proximities are proportional to
the original proximities. This “transformation” is only allowed for positive
dissimilarities. In all other cases, a warning is issued and the transformation
is set to INTERVAL.

INTERVAL Numerical transformation. In this case, the transformed proximities are pro-
portional to the original proximities, including free estimation of the inter-
cept. The inclusion of the intercept assures that all transformed proximities
are positive.

ORDINAL Ordinal transformation. The transformed proximities have the same order as
the original proximities. In parentheses, the approach to tied proximities can
be specified. Keeping tied proximities tied, also known as secondary ap-
proach to ties, is default. Specification may be implicit, ORDINAL, or explicit,
ORDINAL(KEEPTIES). Allowing tied proximities to be untied, also known as
the primary approach to ties, is specified as ORDINAL (UNTIE).
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SPLINE

SPLINE Keyword

Monotone spline transformation. The transformed proximities are a smooth
nondecreasing piecewise polynomial transformation of the original proxim-
ities of the chosen degree. The pieces are specified by the number and place-
ment of the interior knots.

SPLINE has the following keywords:

DEGREE

INKNOT

Example

The degree of the polynomial. If DEGREE is not specified, the degree is
assumed to be 2. The range of DEGREE is between 1 and 3 (inclusive).

The number of interior knots. If INKNOT is not specified, the number of
interior knots is assumed to be 1. The range of INKNOT is between 1 and the
number of different proximities.

PROXSCAL object0l TO object05
/TRANSFORMATION=ORDINAL (UNTIE) .

e In this example, the proximities are ordinally transformed, where tied proximities are
allowed to be untied.

e The default conditionality (MATRIX) implies that the transformation is performed for each
source separately.

PROXIMITIES Subcommand

The PROXIMITIES subcommand specifies the type of proximities used in the analysis. The
term proximity is used for either similarity or dissimilarity data.

DISSIMILARITIES Dissimilarity data. This specification is the default when PROXIMITIES is not

SIMILARITIES

Example

specified. Small dissimilarities correspond to small distances, and large
dissimilarities correspond to large distances.

Similarity data. Small similarities correspond to large distances and large
similarities correspond to small distances.

PROXSCAL object0l TO objectl2
/PROXIMITIES=SIMILARITIES.

e In this example, PROXSCAL expects the proximities to be similarities.
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MODEL Subcommand

MODEL defines the scaling model for the analysis if more than one source is present.
IDENTITY is the default model. The three other models are individual differences models.

IDENTITY

WEIGHTED

GENERALIZED

REDUCED

Identity model. All sources have the same configuration. This is the default
model, and it is not an individual differences model.

Weighted Euclidean model. This model is an individual differences model
and equivalent to the INDSCAL model in the ALSCAL procedure. Each
source has an individual space, in which every dimension of the common
space is weighted differentially.

Generalized Euclidean model. This model is equivalent to the GEMSCAL
model in the ALSCAL procedure. Each source has an individual space that
is equal to a rotation of the common space, followed by a differential
weighting of the dimensions.

Reduced rank model. This model is similar to GENERALIZED, but the rank of
the individual space is equal to n. This number is always smaller than the
maximum number of dimensions and equal to or greater than 1. The default
is 2.

e If IDENTITY is specified for only one source, this subcommand is silently ignored.

e If an individual differences model is specified for only one source, a warning is issued,
and the model is set to IDENTITY.

Example

PROXSCAL object0l TO object07
/MODEL=WEIGHTED.

e A weighted Euclidean model is fitted, but only when the number of cases in the working
data file is a multiple of 7, starting from 14 (14, 21, 28, and so on). Otherwise, there is
only one source, and the model is set to IDENTITY.

RESTRICTIONS Subcommand

PROXSCAL provides two types of restrictions for the user to choose from. The first type fixes
(some) coordinates in the configuration. The second type specifies that the common space is
a weighted sum of independent variables.

COORDINATES

Fixed coordinates. A parenthesized SPSS data filename must be
specified containing the fixed coordinates for the common space. A
variable list may be given, if some specific variables need to be
selected from the external file. If the variable list is omitted, the pro-
cedure automatically selects the first MAXDIM variables in the external
file, where MAXDIM is the maximum number of dimensions requested
for the analysis on the CRITERIA subcommand. A missing value
indicates that a coordinate on a dimension is free. The coordinates of
objects with nonmissing values are kept fixed during the analysis. The
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number of cases for each variable must be equal to the number of
objects.

VARIABLES Independent variables. The common space is restricted to be a linear
combination of the independent variables in the variable list. A paren-
thesized SPSS data file must be specified containing the independent
variables. If the variable list is omitted, the procedure automatically
selects all variables in the external file. Instead of the variable list, the
user may specify the keyword FIRST(n), where nis a positive integer,
to select the first n variables in the external file. The number of cases
for each variable must be equal to the number of objects. After the
variable selection specification, we may provide a list of keywords (in
number equal to the number of the independent variables) indicating
the transformations for the independent variables.

VARIABLES Keyword

The following keywords may be specified:

INTERVAL Numerical transformation. In this case, the transformed values of a variable
are proportional to the original values of the variable, including free estima-
tion of the intercept.

NOMINAL Nominal transformation. The values are treated as unordered. The same val-
ues will obtain the same transformed values.

ORDINAL Ordinal transformation. The values of the transformed variable have the
same order as the values of the original variable. In parenthesis, the approach
to tied values can be specified. Keeping tied values tied, also known as sec-
ondary approach to ties, is default. Specification may be implicit, ORDINAL,
or explicit, ORDINAL(KEEPTIES). Allowing tied values to be untied, also
known as the primary approach to ties, is specified as ORDINAL (UNTIE).

SPLINE Monotone spline transformation. The transformed values of the variable are
a smooth nondecreasing piecewise polynomial transformation of the original
values of the chosen degree. The pieces are specified by the number and
placement of the interior knots.

SPLINE Keyword

SPLINE has the following keywords:

DEGREE The degree of the polynomial. If DEGREE is not specified, the degree is as-
sumed to be 2. The range of DEGREE is between 1 and 3 (inclusive).

INKNOT The number of interior knots. If INKNOT is not specified, the number of
interior knots is assumed to be 1. The range of INKNOT is between 0 and the
number of different values of the variable.
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PROXSCAL aunt TO uncle
/RESTRICTIONS=VARIABLES (ivars.sav) degree generation gender

(ORDINAL ORDINAL NOMINAL) .

e In this example, there are three independent variables specified, namely degree,
generation, and gender.

e The variables are specified in the data file ivars.sav.

e On both degree and generation, ordinal transformations are allowed. By default, tied
values in ordinal variables are kept tied. Gender is allowed to be nominally transformed.

ACCELERATION Subcommand

By default, a fast majorization method is used to minimize stress.

NONE  The standard majorization update. This turns off the fast method.

e If the subcommand RESTRICTION is used with fixed coordinates or independent
variables, ACCELERATION=NONE is in effect.

e If an individual differences model is specified on the MODEL subcommand,
ACCELERATION=NONE is in effect.

Example

PROXSCAL VARIABLES=object0l TO objectl2
/ACCELERATION=NONE.

e Here, relaxed updates are switched off through the specification of the keyword NONE
after ACCELERATION.

CRITERIA Subcommand

Use CRITERIA to set the dimensionality and criteria for terminating the algorithm, or mini-
mization process. You can specify one or more of the following keywords:

DIMENSIONS

MAXITER

Minimum and maximum number of dimensions. By default, PROXSCAL
computes a solution in two dimensions (min=2 and max=2). The minimum
and maximum number of dimensions can be any integers inclusively
between 1 and the number of objects minus 1, as long as the minimum is less
than or equal to the maximum. PROXSCAL starts computing a solution in the
largest dimensionality and reduces the dimensionality in steps, until the
lowest dimensionality is reached. Specifying a single value represents both
minimum and maximum number of dimensions, thus DIMENSIONS(4) is
equivalent to DIMENSIONS(4,4).

Maximum number of iterations. By default, n=100, specifying the maximum
number of iterations that is performed while one of the convergence criterion
below (CONVERGENCE and STRESSMIN) is not yet reached. Decreasing this
number might give less accurate results but will take less time. n must have
a positive integer value.
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DIFFSTRESS Convergence criterion. PROXSCAL minimizes the goodness-of-fit index

normalized raw stress. By default, PROXSCAL stops iterating when the
difference in consecutive stress values is less than 0.0001 (»=0.0001). To
obtain a more precise solution, you can specify a smaller value. The value
specified must lie between 0.0 and 1.0, inclusively.

MINSTRESS Minimum stress value. By default, PROXSCAL stops iterating when the stress

value itself is small, that is, less than 0.0001 (r=0.0001). To obtain an even
more precise solution, you can specify a smaller value. The value specified
must lie between 0.0 and 1.0, inclusively.

Example
PROXSCAL VARIABLES=object0l TO object24

/CRITERIA=DIMENSIONS (2,4) MAXITER(200) DIFFSTRESS(0.00001).

The maximum number of dimensions equals 4 and the minimum number of dimensions
equals 2. PROXSCAL computes a four-, three-, and two-dimensional solution, respectively.
The maximum number of iteration is raised to 200.

The convergence criterion is sharpened to 0.00001.

PRINT Subcommand

PRINT specifies the optional output. By default, PROXSCAL displays the stress and fit values
for each analysis, the coordinates of the common space, and, with appropriate specification
on corresponding subcommands, the individual space weights and transformed independent
variables, corresponding regression weights, and correlations.

Omitting the PRINT subcommand or specifying PRINT without keywords is equivalent to
specifying COMMON, WEIGHTS, and VARIABLES.

If a keyword(s) is specified, only the output for that particular keyword(s) is displayed.
In the case of duplicate or contradicting keyword specification, the last keyword applies.

Inapplicable keywords are silently ignored. That is, specifying a keyword for which no
output is available (for example, specifying INDIVIDUAL with only one source) will
silently ignore this keyword.

NONE No output. Display only the normalized raw stress and corresponding
fit values.
INPUT Input data. The display includes the original proximities, and, if

present, the data weights, the initial configuration, and the fixed
coordinates or the independent variables.

RANDOM Multiple random starts. Displays the random number seed and stress

value of each random start.

HISTORY History of iterations. Displays the history of iterations of the main

algorithm.
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DECOMPOSITION
COMMON
DISTANCES

WEIGHTS

INDIVIDUAL

TRANSFORMATION

VARIABLES

CORRELATIONS
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Stress measures. Displays different stress values. The table contains
values for normalized raw stress, Stress-I, Stress-II, S-Stress,
dispersion accounted for (D.A.F.), and Tucker’s coefficient of
congruence. This is specified by default.

Decomposition of stress. Displays an object and source decomposition
of stress, including row and column totals.

Common space. Displays the coordinates of the common space. This
is specified by default.

Distances. Displays the distances between the objects in the
configuration.

Individual space weights. Displays the individual space weights, only
if one of the individual differences models is specified on the MODEL
subcommand. Depending on the model, the space weights are
decomposed in rotation weights and dimension weights, which are
also displayed. This is specified by default.

Individual spaces. The coordinates of the individual spaces are
displayed, only if one of the individual differences models is specified
on the MODEL subcommand.

Transformed proximities. Displays the transformed proximities
between the objects in the configuration.

Independent variables. 1f VARIABLES was specified on the
RESTRICTIONS subcommand, this keyword triggers the display of the
transformed independent variables and the corresponding regression
weights. This is specified by default.

Correlations. The correlations between the independent variables and
the dimensions of the common space are displayed. This is specified
by default.

PROXSCAL VARIABLES=source(Ol TO source02
/TABLE=row_id BY col_id
/MODEL=WEIGHTED
/PRINT=HISTORY COMMON STRESS.

e Here, a weighted Euclidean model is specified with two sources.

e The output consists of the history of iterations of the main algorithm, the coordinates of
the common space, the individual space weights, and several measures of fit.
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PLOT Subcommand

PLOT controls the display of plots. By default, PROXSCAL produces a scatterplot of object
coordinates of the common space, the individual space weights, and the correlations between
the independent variables (i.e., equivalent to specifying COMMON, WEIGHTS, and

CORRELATIONS).

e Specifying a keyword overrides the default output and only output is generated for that

keyword.

e Duplicate keywords are silently ignored.

e In case of contradicting keywords, only the last keyword is considered.

e Inapplicable keywords (for example, stress with equal minimum and maximum number
of dimensions on the CRITERIA subcommand) are silently ignored.

e Multiple variable lists are allowed for TRANSFORMATIONS and RESIDUALS. For each
variable list, a separate plot will be displayed.

NONE
STRESS

COMMON

WEIGHTS

INDIVIDUAL

TRANSFORMATIONS

RESIDUALS

VARIABLES

No plots. PROXSCAL does not produce any plots.

Stress plot. A plot is produced of stress versus dimensions. This plot
is only produced if the maximum number of dimensions is larger than
the minimum number of dimensions.

Common space. A scatterplot matrix of coordinates of the common
space is displayed.

Individual space weights. A scatterplot is produced of the individual
space weights. This is only possible if one of the individual
differences models is specified on the MODEL subcommand. For the
weighted Euclidean model, the weights are printed in plots with one
dimension on each axis. For the generalized Euclidean model, one plot
is produced per dimension, indicating both rotation and weighting of
that dimension. The reduced rank model produces the same plot as the
generalized Euclidean model does but reduces the number of
dimensions for the individual spaces.

Individual spaces. For each source specified on the variable list, the
coordinates of the individual spaces are displayed in scatterplot
matrices. This is only possible if one of the individual differences
models is specified on the MODEL subcommand.

Transformation plots. Plots are produced of the original proximities
versus the transformed proximities. On the variable list, the sources
can be specified of which the plot is to be produced.

Residuals plots. The transformed proximities versus the distances are
plotted. On the variable list, the sources can be specified of which the
plot is to be produced.

Independent variables. Transformation plots are produced for the
independent variables specified on the variable list.
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Correlations. A plot of correlations between the independent variables
and the dimensions of the common space is displayed.

PROXSCAL VARIABLES=source(Ol TO source02
/TABLE=row_id BY col_id
/MODEL=WEIGHTED
/CRITERIA=DIMENSIONS (3)

/PLOT=COMMON INDIVIDUAL (source02) .

e Here, the syntax specifies a weighted Euclidean model with two sources in three

dimensions.

e COMMON produces a scatterplot matrix defined by dimensions 1, 2, and 3.

e For the individual spaces, a scatterplot matrix with 3 dimensions is only produced for the
individual space of source02.

OUTFILE Subcommand

OUTFILE saves coordinates of the common space, individual space weights, distances, trans-
formed proximities, and transformed independent variables to an SPSS data file. The only
specification required is a name for the output file.

COMMON

WEIGHTS

DISTANCES

TRANSFORMATION

Common space coordinates. The coordinates of the common space are
written to an SPSS data file. The columns (variables) represent the
dimensions DIM_1, DIM_2, ..., DIM_n of the common space. The num-
ber of cases (rows) in the SPSS data file equals the number of objects.

Individual space weights. The individual space weights are written to
an SPSS data file. The columns represent the dimensions DIM_1,
DIM_2, ..., DIM_n of the space weights. The number of cases depends
on the individual differences model specified on the MODEL subcom-
mand. The weighted Euclidean model uses diagonal weight matrices.
Only the diagonals are written to file and the number of cases is equal
to the number of dimensions. The generalized Euclidean model uses
full-rank nonsingular weight matrices. The matrices are written to the
SPSS data file row by row. The reduced rank model writes matrices to
the SPSS data file in the same way as the generalized Euclidean model
does but does not write the reduced part.

Distances. The matrices containing the distances for each source are
stacked beneath each other and written to an SPSS data file. The
number of variables in the data file are equal to the number of objects
(OBJ_1, OBJ_2, ... OBJ_n) and the number of cases in the data file are
equal to the number of objects times the number of sources.

Transformed proximities. The matrices containing the transformed
proximities for each source are stacked beneath each other and written
to an SPSS data file. The number of variables in the file are equal to
the number of objects (OBJ_1, OBJ_2, ... OBJ_n) and the number of
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cases in the data file are equal to the number of objects times the num-
ber of sources.

VARIABLES Independent variables. The transformed independent variables are
written to an SPSS data file. The variables are written to the columns
(VAR_1, VAR_2, ..., VAR_n). The number of variables in the data file
are equal to the number of independent variables and the number of
cases are equal to the number of objects.

Example

PROXSCAL VARIABLES=source(Ol TO source(04
/TABLE=row_id BY col_id
/OUTFILE=COMMON (start.dat) .

e Here, the coordinates of the common space are written to the SPSS data file start.dat.

MATRIX Subcommand

MATRIX reads SPSS matrix data files. It can read a matrix written by either PROXIMITIES or
CLUSTER.

e The specification on MATRIX is the keyword IN and the matrix file in parentheses.

e Generally, data read by PROXSCAL are already in matrix form, whether in square format,
or in stacked format using the TABLE subcommand.

e The proximity matrices PROXSCAL reads have ROWTYPE_ values of PROX.

e Using MATRIX=IN, PROXSCAL will ignore variables specified on the main variable list.
All numerical variables from the matrix data file are processed.

e PROXSCAL ignores variables specified in the WEIGHTS subcommand in combination
with the use of MATRIX=IN.

e With MATRIX=IN, only a source identifying variable can be specified on the TABLE sub-
command. The sources are created as a result of a split file action.

IN) Read a matrix data file. Specify the filename in parentheses. Data read through the
MATRIX subcommand does not replace the working data file.

Example
GET FILE = ‘PROXMTX.SAV'.

PROXSCAL
/MATRIX=IN('MATRIX.SAV') .

e MATRIX=IN specifies an external matrix data file called matrix.sav, of which all numerical
variables are used for the current analysis.
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compared to Homogeneity Analysis, 9

normalization, 155-156, 168-170
column principal, 168
custom, 170
in Correspondence Analysis, 54, 261
principal, 168, 172
row principal, 155-156, 168
symmetrical, 168, 177
normalized raw Stress
in Multidimensional Scaling, 309
numerical scaling level
in Multidimensional Scaling, 303

object points plots

in Categorical Principal Components Analysis, 35,

237
object scores

in Categorical Principal Components Analysis, 37,

112, 116, 124,236

in Homogeneity Analysis, 63, 186-188, 191-194,
195-196

in Nonlinear Canonical Correlation Analysis, 46,
133

saving in Homogeneity Analysis, 273

saving in Nonlinear Canonical Correlation
Analysis, 282

optimal scaling level, 2
choosing, 84-85, 95-100
compared to measurement level, 2

in Categorical Principal Components Analysis, 29,

229
in Nonlinear Canonical Correlation Analysis, 278
multiple nominal, 12
nominal, 2, 3, 5, 10, 91
numerical, 2, 3, 6-7, 90, 303
ordinal, 2, 3, 5, 91, 100, 303
ordinal scaling level
in Multidimensional Scaling, 303
outliers
in Nonlinear Canonical Correlation Analysis, 133

OVERALS. See Nonlinear Canonical Correlation
Analysis

perceptual mapping, 7
permutations
in Correspondence Analysis, 165-166
plots
in Categorical Regression, 26
in Correspondence Analysis, 57, 263
in Homogeneity Analysis, 63
in Multidimensional Scaling, 76, 78
in Nonlinear Canonical Correlation Analysis, 46
PRINCALS. See Nonlinear Principal Components
Analysis
profiles
in Correspondence Analysis, 156-157
projected centroids
in Nonlinear Canonical Correlation Analysis,
142-144, 148
projected centroids plots
in Categorical Principal Components Analysis, 34,
239

proximities, 197

quantifications
in Categorical Principal Components Analysis, 111
in Nonlinear Canonical Correlation Analysis, 141
optimality of, 101-102

regression coefficients
in Categorical Regression, 24
Regression with Optimal Scaling. See Categorical
Regression
relaxed updates
in Multidimensional Scaling, 75
residuals
in Categorical Regression, 92
residuals plots
in Categorical Principal Components Analysis, 238
in Multidimensional Scaling, 310
restrictions
in Multidimensional Scaling, 74



row scores
in Correspondence Analysis, 158-159, 180-182

row scores plots
in Correspondence Analysis, 154-156

scatterplot matrices, 15-16, 116

scree plot, 198
in Multidimensional Scaling, 199

similarities, 179
single category coordinates

in Nonlinear Canonical Correlation Analysis,
140-142

single fit

in Nonlinear Canonical Correlation Analysis, 137,

145-146

single loss

in Nonlinear Canonical Correlation Analysis, 137
singular values, 160
spline

in Multidimensional Scaling, 304
standardization

in Correspondence Analysis, 54, 151, 261
standardized regression coefficients

in Categorical Regression, 87, 96, 100
strain, 13
Stress

in Multidimensional Scaling, 201
Stress decomposition

in Multidimensional Scaling, 202
Stress measures

in Multidimensional Scaling, 78, 309
Stress plots

in Multidimensional Scaling, 76, 310
sunflower plots, 187
supplementary objects

in Categorical Regression, 23
supplementary points

in Correspondence Analysis, 152, 159, 160-162,
259

syntax
diagrams, 211-212
INCLUDE files, 213
rules, 211-212

Subject Index 321

tolerance
in Categorical Regression, 90
transformation plots, 4
creating, 4
in Categorical Principal Components Analysis, 34,
238
in Multidimensional Scaling, 76, 310
in Nonlinear Canonical Correlation Analysis,
138-140, 146-147, 281
nominal scaling level, 92,97, 98, 99, 105, 139, 146,
147, 149
numerical scaling level, 91
ordinal scaling level, 101, 121-122, 140

transformation type. See optimal scaling level

transformations
effects of, 102-105

transformed independent variables

in Multidimensional Scaling, 78
transformed proximities

in Multidimensional Scaling, 78, 309

triplots
in Categorical Principal Components Analysis, 35,
239
Tucker’s coefficient of congruence
in Multidimensional Scaling, 309

value labels
as point labels in Homogeneity Analysis, 271
as point labels in Nonlinear Canonical Correlation
Analysis, 281-282
in Homogeneity Analysis, 272
variable labels
as plot labels in Homogeneity Analysis, 271
as plot labels in Nonlinear Canonical Correlation
Analysis, 281-282
in Homogeneity Analysis, 272
variable weight
in Categorical Principal Components Analysis, 29,
229
variance
in Homogeneity Analysis, 188
variance accounted for

in Categorical Principal Components Analysis, 37,
236

weights
in Nonlinear Canonical Correlation Analysis, 46






Syntax Index

ACCELERATION (subcommand)
PROXSCAL command, 307

ACTIVE (keyword)
CATPCA command, 232, 233

aggregate data
ANACOR command, 222-223

ALL (keyword)
ANACOR command, 217-218, 221
CORRESPONDENCE command, 258
HOMALS command, 271, 272
OVERALS command, 281-282
PRINCALS command, 290

ANACOR (command), 215-223
aggregate data, 222-223
DIMENSION subcommand, 218
MATRIX subcommand, 221-222
NORMALIZATION subcommand, 218-219
PLOT subcommand, 220-221
PRINT subcommand, 219-220
TABLE subcommand, 216-218
value labels, 220
VARIANCES subcommand, 219
with WEIGHT command, 222-223

ANALYSIS (subcommand)
CATPCA command, 229
CATREG command, 247
HOMALS command, 270
OVERALS command, 277-278
PRINCALS command, 288-289
with SETS subcommand, 278

with VARIABLES subcommand, 270, 277-278

ANOVA (keyword)
CATREG command, 251

APPROX (keyword)
CATPCA command, 240, 242

AUTORECODE (command)
with HOMALS command, 268, 269

with OVERALS command, 276-277

with PRINCALS command, 286287, 287-288

BIPLOT (keyword)
CATPCA command, 238, 239

CORRESPONDENCE command, 263

BOTH (keyword)
PROXSCAL command, 301

CANONICAL (keyword)
ANACOR command, 218-219

CATEGORY (keyword)
CATPCA command, 238

CATPCA (command), 225
ANALYSIS subcommand, 229
CONFIGURATION subcommand, 233
CRITITER subcommand, 235
DIMENSION subcommand, 234
DISCRETIZATION subcommand, 231
MAXITER subcommand, 235
MISSING subcommand, 232
NORMALIZATION subcommand, 234
OPRINCIPAL keyword, 234
OUTFILE subcommand, 242
PLOT subcommand, 237
PRINT subcommand, 235
SAVE subcommand, 240
SUPPLEMENTARY subcommand, 233
SYMMETRICAL keyword, 234
VARIABLES subcommand, 229
VPRINCIPAL keyword, 234

CATREG (command), 243-254
ANALYSIS subcommand, 247
CRITITER subcommand, 250
DISCRETIZATION subcommand, 248
INITIAL subcommand, 250
MAXITER subcommand, 250
MISSING subcommand, 249
OUTFILE subcommand, 254
PLOT subcommand, 252
PRINT subcommand, 251
SUPPLEMENTARY subcommand, 250
VARIABLES subcommand, 246, 253

CCONF (keyword)
CORRESPONDENCE command, 262

CENTR (keyword)
CATPCA command, 239

with BIPLOT keyword, 239
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CENTROID (keyword)
OVERALS command, 280, 280-282

CHISQ (keyword)
CORRESPONDENCE command, 260

CMEAN (keyword)
CORRESPONDENCE command, 261

COEFF (keyword)
CATREG command, 251

COLUMNS (keyword)
ANACOR command, 219, 220-221

COMMON (keyword)
PROXSCAL command, 309, 310, 311

CONDITION (subcommand)
PROXSCAL command, 303

CONFIGURATION (subcommand)
CATPCA command, 233

CONTRIBUTIONS (keyword)
ANACOR command, 220

CONVERGENCE (subcommand)
HOMALS command, 271
OVERALS command, 280
PRINCALS command, 290

COORDINATES (keyword)
PROXSCAL command, 305

CORR (keyword)
CATPCA command, 236
CATREG command, 251

CORRELATION (keyword)
PRINCALS command, 290

CORRELATIONS (keyword)
PROXSCAL command, 309, 311

CORRESPONDENCE (command), 255-266
DIMENSION subcommand, 259
EQUAL subcommand, 260
MEASURE subcommand, 260
NORMALIZATION subcommand, 261
OUTFILE subcommand, 264
PLOT subcommand, 263
PRINT subcommand, 262
STANDARDIZE subcommand, 261
SUPPLEMENTARY subcommand, 259
TABLE subcommand, 257

CPOINTS (keyword)
CORRESPONDENCE command, 262, 263

CPRINCIPAL (keyword)
ANACOR command, 219
CORRESPONDENCE command, 262

CPROFILES (keyword)
CORRESPONDENCE command, 262

CRITERIA (subcommand)

PROXSCAL command, 307

CRITITER (subcommand)

CATPCA command, 235
CATREG command, 250

CSUM (keyword)

CORRESPONDENCE command, 261

DECOMPOSITION (keyword)

PROXSCAL command, 309

DEFAULT (keyword)

ANACOR command, 220, 220-221
CORRESPONDENCE command, 263
HOMALS command, 271, 272
OVERALS command, 280, 281-282
PRINCALS command, 290, 291-292

DEGREE (keyword)

CATPCA command, 231
CATREG command, 248
PROXSCAL command, 304, 306
with SPLINE keyword, 304, 306

DESCRIP (keyword)

CATPCA command, 235
CATREG command, 251

DIFFSTRESS (keyword)

PROXSCAL command, 308

DIM variable

ANACOR command, 222
HOMALS command, 274
OVERALS command, 283
PRINCALS command, 294

DIMENSION (subcommand)

ANACOR command, 218

CATPCA command, 234
CORRESPONDENCE command, 259
HOMALS command, 270

OVERALS command, 279

PRINCALS command, 289

with SAVE subcommand, 274, 282, 292-293

DIMENSIONS (keyword)

PROXSCAL command, 307

DIMn variable

CORRESPONDENCE command, 265

DISCRDATA (keyword)

CATREG command, 254

DISCRDATA (keyword)

CATPCA command, 242



DISCRETIZATION (subcommand)
CATPCA command, 231

CATREG command, 248

DISCRIM (keyword)
HOMALS command, 271, 272

DISSIMILARITIES (keyword)
PROXSCAL command, 304

DISTANCES (keyword)
PROXSCAL command, 309, 311

DISTR (keyword)
CATPCA command, 232
CATREG command, 249

EIGEN (keyword)
HOMALS command, 271

PRINCALS command, 290
EQINTYV (keyword)

CATPCA command, 231

CATREG command, 249

with GROUPING keyword, 231

EQUAL (subcommand)
CORRESPONDENCE command, 260

EUCLID (keyword)
CORRESPONDENCE command, 260

EXTRACAT (keyword)
CATPCA command, 232, 233
CATREG command, 249
with ACTIVE keyword, 233
with PASSIVE keyword, 232

FIRST (keyword)
PROXSCAL command, 306

with VARIABLES keyword, 306

FIT (keyword)
OVERALS command, 280

FIXED (keyword)
CATPCA command, 233

FREQ (keyword)
HOMALS command, 271
OVERALS command, 280
PRINCALS command, 290

GENERALIZED (keyword)
PROXSCAL command, 305

Syntax Index

GROUPING (keyword)
CATPCA command, 231

CATREG command, 248

HISTORY (keyword)
CATPCA command, 236

CATREG command, 251

HOMALS command, 271

OVERALS command, 280

PRINCALS command, 290

PROXSCAL command, 308
HOMALS (command), 267-274

ANALYSIS subcommand, 270

compared to OVERALS, 278

CONVERGENCE subcommand, 271

DIMENSION subcommand, 270

MATRIX subcommand, 274

MAXITER subcommand, 271

NOBSERVATIONS subcommand, 270

PLOT subcommand, 271

PRINT subcommand, 271

SAVE subcommand, 273

value labels, 272

variable labels, 272

VARIABLES subcommand, 269

with AUTORECODE command, 268, 269

with RECODE command, 268

IDENTITY (keyword)
PROXSCAL command, 305

IN (keyword)
PROXSCAL command, 312

INDEPENDENT (keyword)
CATPCA command, 234

INDIVIDUAL (keyword)
PROXSCAL command, 309, 310

INITIAL (keyword)
CATPCA command, 233

INITIAL (subcommand)
CATREG command, 250
OVERALS command, 279
PROXSCAL command, 301

INKNOT (keyword)
CATPCA command, 231
CATREG command, 248
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PROXSCAL command, 304, 306 PRINCALS command, 293-294
with SPLINE keyword, 304, 306 PROXSCAL command, 312

INPUT (keyword) with SAVE subcommand, 274, 282, 293
PROXS%AL command, 308 MAX (keyword)

INTERVAL (keyword) ANACOR command, 221
PROXSCAL command, 303, 306 CORRESPONDENCE command, 264
with VARIABLES keyword, 306 HOMALS command, 273

OVERALS command, 281-282
PRINCALS command, 292

MAXITER (keyword)
JOINT (keyword) PROXSCAL command, 307
ANACOR command, 220-221 MAXITER (subcommand)
JOINTCAT (keyword) CATPCA command, 235
CATPCA command, 239 CATREG command, 250

HOMALS command, 271
OVERALS command, 279
PRINCALS command, 289

KEEPTIES (k d MEASURE (subcommand)
PROXSC A arord) nd, 306 CORRESPONDENCE command, 260
with ORDINAL keyword, 306 MINSTRESS (keyword)

PROXSCAL command, 308
MISSING (subcommand)
CATPCA command, 232

LEVEL (keyword) CATREG command, 249
CATPCA command, 229, 230 missing values
CATREG command, 247 with OVERALS command, 277

LEVEL variable with PRINCALS command, 286
ANACOR command, 221-222 MNOM (keyword)

HOMALS command, 274 CATPCA command, 230
OVERALS command, 283 OVERALS command, 278
PRINCALS command, 293 PRINCALS command, 288

LEVEL_ variable MODEIMPU (keyword)
CORRESPONDENCE command, 264, 265 gﬁg‘é@ Comma"g» ﬁg 233

command,

LI%&%{%%E%QQ;%& 232 with ACTIVE keyword, 233
CATREG command, 249 with PASSIVE keyword, 232

LOADING (keyword) MODEL (subcommand)
CATPCA command, 236, 238, 239 PROXSCAL command, 305
with BIPLOT keyword, 239 M%]A'I%ECL:,XING (keygv%%dl)

LOADINGS (keyword) command,
OVERALS command, 280282 CATREG command, 248
PRINCALS command, 290, 290-292

LOWER (keyword)

PROXSCAL command, 301
NCAT (keyword)

CATPCA command, 231
CATREG command, 249
MATRIX (keyword) with GROUPING keyword, 231
PROXSCAL command, 303 N]?A{Ilil/[A(]ée }\évord) 4920921
command, —
b 1222 CORRESPONDENCE command, 263

HOMALS command, 274 HOMALS command, 273
OVERALS command, 283



OVERALS command, 281-282

PRINCALS command, 292
NOBSERVATIONS (subcommand)

HOMALS command, 270

OVERALS command, 279

PRINCALS command, 289
NOMI (keyword)

CATPCA command, 230

CATREG command, 247
NOMINAL (keyword)

PROXSCAL command, 306

with VARIABLES keyword, 306
NONE (keyword)

ANACOR command, 220, 220-221

CATPCA command, 236, 239

CATREG command, 252

CORRESPONDENCE command, 263

HOMALS command, 271, 272

OVERALS command, 280, 281-282

PRINCALS command, 290, 291-292

PROXSCAL command, 307, 308, 310
NORMAL (keyword)

CATPCA command, 232

CATREG command, 249

with DISTR keyword, 232
NORMALIZATION (subcommand)

ANACOR command, 218-219

CATPCA command, 234

CORRESPONDENCE command, 261

with PLOT subcommand, 220
NUME (keyword)

CATPCA command, 230

CATREG command, 248

OVERALS command, 278

PRINCALS command, 289
NUMERICAL (keyword)

CATREG command, 250

OVERALS command, 279

OBJECT (keyword)

CATPCA command, 233, 236, 237, 240, 242

CATREG command, 250

HOMALS command, 271, 272

OVERALS command, 280, 280-282

PRINCALS command, 290, 290-292
OCORR (keyword)

CATPCA command, 236

CATREG command, 251

Syntax Index

OPRINCIPAL (keyword)
CATPCA command, 234

ORDI (keyword)
CATPCA command, 230
CATREG command, 247
OVERALS command, 278
PRINCALS command, 288
ORDINAL (keyword)
PROXSCAL command, 303, 306
with VARIABLES keyword, 306
OUT (keyword)
ANACOR command, 221
HOMALS command, 274
OUTFILE (subcommand)
CATPCA command, 242
CATREG command, 254
CORRESPONDENCE command, 264
PROXSCAL command, 311
OVERALS (command), 275-283
active variables, 278
ANALYSIS subcommand, 277-278
compared to HOMALS, 278
compared to PRINCALS, 278
CONVERGENCE subcommand, 280
DIMENSION subcommand, 279
INITIAL subcommand, 279
MATRIX subcommand, 283
MAXITER subcommand, 279
NOBSERVATIONS subcommand, 279
passive variables, 277-278
PLOT subcommand, 280-282
PRINT subcommand, 280
SAVE subcommand, 282-283
SETS subcommand, 278
value labels, 281-282
variable labels, 281-282
VARIABLES subcommand, 277
with AUTORECODE command, 276-277
with RECODE command, 276-277

PASSIVE (keyword)
CATPCA command, 232

PERMUTATION (keyword)
ANACOR command, 220
CORRESPONDENCE command, 262
PLOT (subcommand)
ANACOR command, 220-221
CATPCA command, 237
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CATREG command, 252
CORRESPONDENCE command, 263
HOMALS command, 271

OVERALS command, 280-282

PRINCALS command, 290-292
PROXSCAL command, 310

with NORMALIZATION subcommand, 220

PRED (keyword)
CATREG command, 253

PRINCALS (command), 285-294
ANALYSIS subcommand, 288289
compared to OVERALS, 278
DIMENSION subcommand, 289
MATRIX subcommand, 293-294
MAXITER subcommand, 289
NOBSERVATIONS subcommand, 289
PLOT subcommand, 290-292
PRINT subcommand, 290
SAVE subcommand, 292-293
value labels, 291-292
variable labels, 291-292
VARIABLES subcommand, 287-288

with AUTORECODE command, 286-287,
287-288
with RECODE command, 286-287, 287-288
PRINCIPAL (keyword)

ANACOR command, 218-219

CORRESPONDENCE command, 261
PRINT (subcommand)

ANACOR command, 219-220

CATPCA command, 235

CATREG command, 251

CORRESPONDENCE command, 262

HOMALS command, 271

OVERALS command, 280

PRINCALS command, 290

PROXSCAL command, 308

PROFILES (keyword)
ANACOR command, 219

PROJCENTR (keyword)
CATPCA command, 239

PROXIMITIES (subcommand)
PROXSCAL command, 304

PROXSCAL (command), 295-312
ACCELERATION subcommand, 307
CONDITION subcommand, 303
CRITERIA subcommand, 307
INITIAL subcommand, 301
MATRIX subcommand, 312
OUTFILE subcommand, 311
PLOT subcommand, 310

PRINT subcommand, 308
PROXIMITIES subcommand, 304
RESTRICTIONS subcommand, 305
SHAPE subcommand, 301

TABLE subcommand, 298
TRANSFORMATION subcommand, 303
WEIGHTS subcommand, 302

QUANT (keyword)
CATPCA command, 236

CATREG command, 251

HOMALS command, 271, 272
OVERALS command, 280, 280-282
PRINCALS command, 290, 290-292

R (keyword)
CATREG command, 251
RANDOM (keyword)
CATREG command, 250
OVERALS command, 279
PROXSCAL command, 302, 308
RANKING (keyword)
CATPCA command, 231
CATREG command, 248

RATIO (keyword)
PROXSCAL command, 303

RCMEAN (keyword)
CORRESPONDENCE command, 261

RCONF (keyword)
CORRESPONDENCE command, 262

RECODE (command)
with HOMALS command, 268
with OVERALS command, 276-277
with PRINCALS command, 286-287, 287-288

REDUCED (keyword)
PROXSCAL command, 305

RES (keyword)
CATREG command, 253

RESID (keyword)
CATPCA command, 238
CATREG command, 252

RESIDUALS (keyword)
PROXSCAL command, 310

RESTRICTIONS (subcommand)
PROXSCAL command, 305

RMEAN (keyword)
CORRESPONDENCE command, 261



ROWS (keyword)
ANACOR command, 219, 220-221

ROWTYPE_ variable
ANACOR command, 221-222
CORRESPONDENCE command, 264, 265
HOMALS command, 274
OVERALS command, 283
PRINCALS command, 293

RPOINTS (keyword)
CORRESPONDENCE command, 262, 263

RPRINCIPAL (keyword)
ANACOR command, 219
CORRESPONDENCE command, 261

RPROFILES (keyword)
CORRESPONDENCE command, 262

RSUM (keyword)
CORRESPONDENCE command, 261

SAVE (subcommand)
CATPCA command, 240

HOMALS command, 273

OVERALS command, 282-283

PRINCALS command, 292-293

with DIMENSION subcommand, 274, 282,

292-293

with MATRIX subcommand, 274, 282, 293
SCORE (keyword)

ANACOR command, 221-222

CORRESPONDENCE command, 264

SCORE variable
ANACOR command, 222

SCORE_ variable
CORRESPONDENCE command, 265

SCORES (keyword)
ANACOR command, 219

SET_ variable
OVERALS command, 283

SETS (subcommand)
OVERALS command, 278
with ANALYSIS subcommand, 278

SHAPE (subcommand)
PROXSCAL command, 301

SIMILARITIES (keyword)
PROXSCAL command, 304

SIMPLEX (keyword)
PROXSCAL command, 301

SINGULAR (keyword)
ANACOR command, 219

Syntax Index

SNOM (keyword)
OVERALS command, 278

PRINCALS command, 288
SPLINE (keyword)

PROXSCAL command, 304, 306

with VARIABLES keyword, 306
SPNOM (keyword)

CATPCA command, 230, 231

CATREG command, 247
SPORD (keyword)

CATPCA command, 230, 231

CATREG command, 247

STANDARDIZE (subcommand)
CORRESPONDENCE command, 261

STRESS (keyword)
PROXSCAL command, 309, 310

SUPPLEMENTARY (subcommand)
CATPCA command, 233
CATREG command, 250
CORRESPONDENCE command, 259
SYMMETRICAL (keyword)
CATPCA command, 234
CORRESPONDENCE command, 261

TABLE (keyword)
ANACOR command, 219

CORRESPONDENCE command, 262
TABLE (subcommand)

ANACOR command, 216-218

casewise data, 217

CORRESPONDENCE command, 257

PROXSCAL command, 298

table data, 217-218

TORGERSON (keyword)
PROXSCAL command, 302

TRANS (keyword)
CATPCA command, 238
CATREG command, 252
OVERALS command, 280-282

TRANSFORMATION (keyword)
PROXSCAL command, 309, 311

TRANSFORMATION (subcommand)
PROXSCAL command, 303

TRANSFORMATIONS (keyword)
PROXSCAL command, 310

TRCOLUMNS (keyword)
ANACOR command, 220-221

CORRESPONDENCE command, 263

329
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TRDATA (keyword)
CATPCA command, 240, 242

CATREG command, 253, 254

TRIPLOT (keyword)
CATPCA command, 239

TRROWS (keyword)
ANACOR command, 220-221
CORRESPONDENCE command, 263

UNCONDITIONAL (keyword)
PROXSCAL command, 303

UNIFORM (keyword)
CATPCA command, 232
CATREG command, 249
with DISTR keyword, 232
UNTIE (keyword)
PROXSCAL command, 306
with ORDINAL keyword, 306

UPPER (keyword)
PROXSCAL command, 301

VAF (keyword)
CATPCA command, 236

value labels
ANACOR command, 220

VARIABLE (keyword)
CATPCA command, 233

VARIABLES (keyword)
PROXSCAL command, 306, 309, 310, 312

VARIABLES (subcommand)

CATPCA command, 229

CATREG command, 246, 253

HOMALS command, 269

OVERALS command, 277

PRINCALS command, 287-288

with ANALYSIS subcommand, 270, 277-278
VARIANCE (keyword)

ANACOR command, 222

CORRESPONDENCE command, 264

VARIANCES (subcommand)
ANACOR command, 219

VARNAME_ variable
ANACOR command, 222
CORRESPONDENCE command, 264, 265
HOMALS command, 274
OVERALS command, 283
PRINCALS command, 294

VARTYPE_ variable
OVERALS command, 283

PRINCALS command, 294

VPRINCIPAL (keyword)
CATPCA command, 234

WEIGHT (command)
with ANACOR command, 222-223

with CORRESPONDENCE command, 265

WEIGHT (keyword)
CATPCA command, 229

WEIGHTED (keyword)
PROXSCAL command, 305

WEIGHTS (keyword)
OVERALS command, 280
PROXSCAL command, 309, 310, 311

WEIGHTS (subcommand)
PROXSCAL command, 302
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